# Cyclic Subspace Codes Via Subspace Polynomials

#### Kamil Otal and Ferruh Özbudak

Middle East Technical University

Design and Application of Random Network Codes (DARNEC'15)

November 4-6, 2015 / Istanbul, Turkey.



#### **Outline**

- Introduction
  - Subspace codes
  - Cyclic subspace codes
  - Subspace Polynomials
- Motivation
  - Literature
  - Related work
  - Our goal
- Our contributions
  - A generalization: More codewords
  - One more generalization: More diverse parameters



#### Subspace codes

Consider the following notations and definitions.

- q: a prime power,
- $\mathbb{F}_q$ : the finite field of size q,
- N, k: positive integers such that 1 < k < N,
- $\mathcal{P}_{q}(N)$ : the set of all subspaces of  $\mathbb{F}_{q}^{N}$ ,
- $\mathcal{G}_q(N,k)$ : the set of k-dimensional subspaces in  $\mathcal{P}_q(N)$ ,
- Subspace distance:

$$d(U, V) \coloneqq \dim U + \dim V - 2\dim(U \cap V)$$

for all  $U, V \in \mathcal{P}_q(N)$ .

#### Subspace codes

- Subspace code: A nonempty subset  $\mathcal{C}$  of  $\mathcal{P}_q(N)$  with the subspace distance.
- Constant dimension code: A subspace code C if C ⊆ G<sub>a</sub>(N, k).
- Distance of a code:

$$d(C) := \min\{d(U, V) : U, V \in C \text{ and } U \neq V\}.$$

## Cyclic subspace codes

- Consider  $\mathbb{F}_{q^N}$  instead of  $\mathbb{F}_q^N$  equivalently (and richly).
- $\mathbb{F}_{q^N}^*$ : the set of nonzero elements of  $\mathbb{F}_{q^N}$ .
- Cyclic shift of a codeword U by  $\alpha \in \mathbb{F}_{q^N}^*$ :

$$\alpha \mathbf{U} \coloneqq \{\alpha \mathbf{u} : \mathbf{u} \in \mathbf{U}\}.$$

- It is easy to show that the cyclic shift is also a subspace of the same dimension.
- Orbit of a codeword U:

$$Orb(U) := \{ \alpha U : \alpha \in \mathbb{F}_{q^N}^* \}.$$

- It is easy to show that orbits form an equivalence relation in  $\mathcal{G}_q(N,k)$  and so in  $\mathcal{P}_q(N)$ .
- Cyclic (subspace) code: A subspace code C if
   Orb(U) ⊆ C for all U ∈ C.

## Cyclic subspace codes

The following theorem is well known.

#### **Theorem**

Let  $U \in \mathcal{G}_q(N,k)$ .  $\mathbb{F}_{q^d}$  is the largest field such that U is also  $\mathbb{F}_{q^d}$ -linear (i.e. linear over  $\mathbb{F}_{q^d}$ ) if and only if

$$|Orb(U)|=rac{q^N-1}{q^d-1}.$$

## Cyclic subspace codes

Let d denote the largest integer where U is also  $\mathbb{F}_{q^d}$ -linear.

- Full length orbit: An orbit if d = 1.
- **Degenerate orbit**: An orbit which is not full length.
- Remark that d divides both N and k. More explicitly,

$$U \in \mathcal{G}_q(N,k) \Leftrightarrow U \in \mathcal{G}_{q^d}(N/d,k/d)$$
.

Therefore, it is enough to study on full length orbits.

## **Subspace Polynomials**

• Linearized polynomial (q-polynomial):

$$F(x) = \alpha_s x^{q^s} + \alpha_{s-1} x^{q^{s-1}} + \dots + \alpha_0 x \in \mathbb{F}_{q^N}[x]$$

for some nonnegative integer s.

- The roots of F form a subspace of an extension of  $\mathbb{F}_{q^N}$ .
- The multiplicity of each root of F is the same, and equal to  $q^r$  for some nonnegative integer  $r \le s$ . Explicitly, r is the smallest integer satisfying  $\alpha_r$  is nonzero.

## **Subspace Polynomials**

- Subspace polynomial: A monic linearized polynomial such that
  - splits completely over  $\mathbb{F}_{q^N}$ ,
  - has no multiple root (equivalently  $\alpha_0 \neq 0$ ).
- More explicitly, it is the polynomial

$$\prod_{u\in U}(x-u)$$

where U is a subspace of  $\mathbb{F}_{q^N}$ .

#### Literature

- Subspace codes, particularly constant dimension codes, have been intensely studied in the last decade due to their application in random network coding<sup>1</sup>.
- Cyclic subspace codes are useful in this manner due to their efficient encoding and decoding algorithms. Some recent studies about cyclic codes and their efficiency are:
  - A. Kohnert and S. Kurz; Construction of large constant dimension codes with a prescribed minimum distance, Lecture Notes Computer Science, vol. 5395, pp. 31–42, 2008.
  - T. Etzion and A. Vardy; Error correcting codes in projective space, IEEE Trans. on Inf. Theory, vol. 57, pp. 1165–1173, 2011.

<sup>&</sup>lt;sup>1</sup>R. Kötter and F. R. Kschischang; *Coding for errors and erasures in random network coding*, IEEE Trans. on Inf. Theory, vol. 54, pp. 3579–3591, 2008.

#### Literature

- -> A.-L. Trautmann, F. Manganiello, M. Braun and J. Rosenthal; *Cyclic orbit codes*, IEEE Trans. on Inf. Theory, vol. 59, pp. 7386–7404, 2013.
- M. Braun, T. Etzion, P. Ostergard, A. Vardy and A. Wasserman; Existence of q-analogues of Steiner systems, arXiv:1304.1462, 2013.
- H. Gluesing-Luerssen, K. Morrison and C. Troha; Cyclic orbit codes and stabilizer subfields, Adv. in Math. of Communications, vol. 25, pp. 177–197, 2015.
- E. Ben-Sasson, T. Etzion, A. Gabizon and N. Raviv; Subspace polynomials and cyclic subspace codes; arXiv:1404.7739v3, 2015. (Also in ISIT 2015, pp. 586-590.)

#### Related work

#### Theorem 1<sup>a</sup>

<sup>a</sup>E. Ben-Sasson, T. Etzion, A. Gabizon and N. Raviv; *Subspace polynomials and cyclic subspace codes*; arXiv:1404.7739v3, 2015. (Also in ISIT 2015, pp. 586-590.)

#### Let

- n be a prime,
- $\gamma$  be a primitive element of  $\mathbb{F}_{q^n}$ ,
- ullet  $\mathbb{F}_{q^N}$  be the splitting field of the polynomial

$$x^{q^k} + \gamma^q x^q + \gamma x,$$

•  $U \in \mathcal{G}_{\alpha}(N, k)$  is this polynomial's kernel.

#### Related work

## Theorem 1 (cont'd.)

Then

$$\mathcal{C} := \bigcup_{i=0}^{n-1} \{ \alpha U^{q^i} : \alpha \in \mathbb{F}_{q^N}^* \}$$

is a cyclic code of size  $n\frac{q^{N}-1}{q-1}$  and minimum distance 2k-2.

#### Our goal

Our goal is to generalize their result in two directions:

- Can we insert more orbits (i.e. more codewords)?
- Can we use other types of subspace polynomials (and hence cover more diverse values of length N)?

#### Theorem 2

Let *n* and *r* be positive integers such that  $r \le q^n - 1$  and let

- $\gamma_1,...,\gamma_r$  be distinct elements of  $\mathbb{F}_{q^n}^*$ ,
- $T_i(x) := x^{q^k} + \gamma_i^q x^q + \gamma_i x$  for all  $i \in \{1, ..., r\}$ ,
- N<sub>i</sub> be the degree of the splitting field of T<sub>i</sub> for all i ∈ {1, ..., r},
- $U_i \subseteq \mathbb{F}_{q^{N_i}}$  be the kernel of  $T_i$  for all  $i \in \{1, ..., r\}$ ,
- N be the least common multiple of  $N_1, ..., N_r$ .

## Theorem 2 (cont'd.)

Then the code  $C \subseteq G_q(N, k)$  given by

$$C = \bigcup_{i=1}^r \{ \alpha U_i : \alpha \in \mathbb{F}_{q^N}^* \}$$

is a cyclic code of size  $r\frac{q^{N}-1}{q-1}$  and the minimum distance 2k-2. Moreover, if  $\gamma_i$  and  $\gamma_i$  are conjugate as  $\gamma_i = \gamma_i^{q^m}$  for some integer m, then  $N_i = N_j$  and  $U_i = U_i^{q^m}$ .

## **Corollary 1**

Let n be a positive integer and  $\gamma_1 = \gamma, \gamma_2 = \gamma^q, ..., \gamma_n = \gamma^{q^{n-1}} \in \mathbb{F}_{q^n}$  for some irreducible element  $\gamma$  of  $\mathbb{F}_{q^n}$ . Then, by using the construction in Theorem 2, we can produce a cyclic code of size

$$n\frac{q^N-1}{q-1}$$

and the minimum distance 2k - 2. Resulting code is the same with the one in Theorem 1.

#### Remark 1

In the theorem of Ben-Sasson et al, it is assumed that  $\underline{n}$  is prime and  $\gamma$  is primitive. However, in Corollary 1 they are not needed, only  $\gamma$ 's irreducibleness is assumed. Therefore, Corollary 1 is also an improvement of their theorem.

#### **Example 1**

Let q=2, n=4 and k=3. We can take  $\gamma \in \mathbb{F}_{q^n}^*$  such that the minimal polynomial of  $\gamma$  over  $\mathbb{F}_q$  is  $x^4+x^3+x^2+x+1$ . Here, n=4 is not a prime and  $\gamma$  is not primitive but we can apply Corollary 1 (or Theorem 1) and thus obtain a cyclic code  $\mathcal{C} \subseteq \mathcal{G}_q(12,3)$  of size  $4(2^{12}-1)$  and the minimum distance 4.

#### Remark 2

In Theorem 2, we can choose r as strictly larger than n.

#### **Example 2**

Let q = 3, n = 2 and k = 3. Also let  $\gamma \in \mathbb{F}_{q^n}^*$  with the minimal polynomial  $x^2 + 2x + 2$  over  $\mathbb{F}_q$ .

$$\begin{array}{ll} \underline{\text{Using Theorem 1}} & \underline{\text{Using Theorem 2}} \\ \overline{\text{Use: } \gamma \text{ (and so } \gamma^q)} & \overline{\text{Use: }} \frac{1}{\gamma_1 = \gamma, \gamma_2 = \gamma^q, \gamma_3 = 2} \\ \overline{\text{Size= 2}} & \overline{\text{Size= 3}} \frac{3^{52} - 1}{2} \end{array}$$

- Size has increased % 50.
- The second code is containing the first one.



#### Question

Consider the set

$$\{x^{q^k} + \theta x^q + \gamma x : \theta, \gamma \in \mathbb{F}_{q^n}^*\}$$

for some positive integer n. How should we choose polynomials from this set so that the collection of orbits of their kernels forms a cyclic code of distance 2k - 2?

#### **Theorem 3**

Consider a set P of polynomials

$$T_i(x) := x^{q^k} + \theta_i x^q + \gamma_i x \in \mathbb{F}_{q^n}[x], 1 \le i \le |P|$$

satisfying

- $\theta_i \neq 0$  and  $\gamma_i \neq 0$ ,
- $\frac{\theta_j}{\theta_i} \neq \left(\frac{\gamma_j \theta_i}{\gamma_i \theta_j}\right)^M$  when  $i \neq j$

where

$$M = \frac{(q^{\gcd(n,k-1)}-1)\gcd(k-1,q-1)}{(q-1)\gcd(n,k-1,q-1)}.$$

#### Theorem 3 (cont'd.)

#### Also let

- $N_i$  be the degree of the splitting field of  $T_i$  for all  $i \in \{1, ..., |P|\}$ ,
- $U_i \subseteq \mathbb{F}_{q^{N_i}}$  be the kernel of  $T_i$  for all  $i \in \{1, ..., |P|\}$ ,
- N be the least common multiple of  $N_1, ..., N_{|P|}$ .

Then the code  $C \subseteq \mathcal{G}_q(N, k)$  given by

$$C = \bigcup_{i=1}^{|P|} \{ \alpha U_i : \alpha \in \mathbb{F}_{q^N}^* \}$$

is a cyclic code of size  $|P|\frac{q^N-1}{q-1}$  and the distance 2k-2.

#### Remark 3

Theorem 2 is a special case of Theorem 3 with  $\theta_i = \gamma_i^q$  and  $|P| = r \le q^n - 1$ . Notice that the assumption

$$\frac{\theta_j}{\theta_i} \neq \left(\frac{\gamma_j \theta_i}{\gamma_i \theta_j}\right)^M$$
 when  $i \neq j$ 

has been automatically satisfied due to the fact that  $q^n - 1$  can not divide  $q^k$ .

#### Example 3

Let q = 2, n = 2 and k = 4. Then M = 1. Taking  $\gamma_i = 1$  for all i, obtain

$$P = \{x^{2^4} + \theta x^2 + x : \theta \in \mathbb{F}_{2^2}^*\},\$$

it is chosen as in Theorem 3. Here, we obtain  $N_1 = N_2 = N_3 = 30$  and so

$$N = 30.$$

In that way we construct a cyclic code  $\mathcal{C} \subseteq \mathcal{G}_2(30,4)$  of size  $3(2^{30}-1)$  and minimum distance 6.

#### Example 3 (Cont'd.)

Remark that, if we use Theorem 2 then we must have

$$P = \{x^{2^4} + \theta^2 x^2 + \theta x : \theta \in \mathbb{F}_{2^2}^*\}.$$

Then we obtain  $N_1 = N_2 = 14$  and  $N_3 = 30$  and so

$$N = 210.$$

In that way we construct a cyclic code  $C \subseteq G_2(210,4)$  of size  $3(2^{210} - 1)$  and minimum distance 6.

Therefore, Theorem 3 give us an opportunity to construct codes of different lengths.

One more generalization: More diverse parameters

## Finally...

## Thank you very much

