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Subspace codes

Consider the following notations and definitions.
qqq: a prime power,
FqFqFq: the finite field of size q,
N,kN,kN,k : positive integers such that 1 < k < N,
Pq(N)Pq(N)Pq(N): the set of all subspaces of FN

q ,
Gq(N,k)Gq(N,k)Gq(N,k): the set of k -dimensional subspaces in Pq(N),
Subspace distance:

d(U,V) ∶= dim U + dim V − 2 dim(U ∩V)

for all U,V ∈ Pq(N).
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Subspace codes

Subspace code: A nonempty subset C of Pq(N) with the
subspace distance.
Constant dimension code: A subspace code C if
C ⊆ Gq(N,k).
Distance of a code:

d(C) ∶= min{d(U,V) ∶ U,V ∈ C and U ≠ V}.
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Cyclic subspace codes

Consider FqN instead of FN
q equivalently (and richly).

F∗qNF∗qNF∗qN : the set of nonzero elements of FqN .
Cyclic shift of a codeword U by α ∈ F∗qN :

αU ∶= {αu ∶ u ∈ U}.

It is easy to show that the cyclic shift is also a subspace of
the same dimension.
Orbit of a codeword U:

Orb(U) ∶= {αU ∶ α ∈ F∗qN}.

It is easy to show that orbits form an equivalence relation
in Gq(N,k) and so in Pq(N).
Cyclic (subspace) code: A subspace code C if
Orb(U) ⊆ C for all U ∈ C.
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Cyclic subspace codes

The following theorem is well known.

Theorem
Let U ∈ Gq(N,k). Fqd is the largest field such that U is also
Fqd -linear (i.e. linear over Fqd ) if and only if

∣Orb(U)∣ = qN − 1
qd − 1

.
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Cyclic subspace codes

Let d denote the largest integer where U is also Fqd -linear.
Full length orbit: An orbit if d = 1.
Degenerate orbit: An orbit which is not full length.
Remark that d divides both N and k . More explicitly,

U ∈ Gq(N,k) ⇔ U ∈ Gqd (N/d ,k/d) .

Therefore, it is enough to study on full length orbits.
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Subspace Polynomials

Linearized polynomial (q-polynomial):

F(x) = αsxqs + αs−1xqs−1 + ... + α0x ∈ FqN [x]

for some nonnegative integer s.
The roots of F form a subspace of an extension of FqN .
The multiplicity of each root of F is the same, and equal to
qr for some nonnegative integer r ≤ s. Explicitly, r is the
smallest integer satisfying αr is nonzero.
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Subspace Polynomials

Subspace polynomial: A monic linearized polynomial
such that

splits completely over FqN ,
has no multiple root (equivalently α0 ≠ 0).

More explicitly, it is the polynomial

∏
u∈U

(x − u)

where U is a subspace of FqN .
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Literature

Subspace codes, particularly constant dimension codes,
have been intensely studied in the last decade due to their
application in random network coding1.
Cyclic subspace codes are useful in this manner due to
their efficient encoding and decoding algorithms. Some
recent studies about cyclic codes and their efficiency are:
–> A. Kohnert and S. Kurz; Construction of large constant

dimension codes with a prescribed minimum distance,
Lecture Notes Computer Science, vol. 5395, pp. 31–42,
2008.

–> T. Etzion and A. Vardy; Error correcting codes in projective
space, IEEE Trans. on Inf. Theory, vol. 57, pp. 1165–1173,
2011.

1R. Kötter and F. R. Kschischang; Coding for errors and erasures in
random network coding, IEEE Trans. on Inf. Theory, vol. 54, pp. 3579–3591,
2008.
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Literature

–> A.-L. Trautmann, F. Manganiello, M. Braun and J.
Rosenthal; Cyclic orbit codes, IEEE Trans. on Inf. Theory,
vol. 59, pp. 7386–7404, 2013.

–> M. Braun, T. Etzion, P. Ostergard, A. Vardy and A.
Wasserman; Existence of q-analogues of Steiner systems,
arXiv:1304.1462, 2013.

–> H. Gluesing-Luerssen, K. Morrison and C. Troha; Cyclic
orbit codes and stabilizer subfields, Adv. in Math. of
Communications, vol. 25, pp. 177–197, 2015.

–> E. Ben-Sasson, T. Etzion, A. Gabizon and N. Raviv;
Subspace polynomials and cyclic subspace codes;
arXiv:1404.7739v3, 2015. (Also in ISIT 2015, pp. 586-590.)
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Related work

Theorem 1a

aE. Ben-Sasson, T. Etzion, A. Gabizon and N. Raviv; Subspace
polynomials and cyclic subspace codes; arXiv:1404.7739v3, 2015. (Also in
ISIT 2015, pp. 586-590.)

Let
n be a prime,
γ be a primitive element of Fqn ,
FqN be the splitting field of the polynomial

xqk + γqxq + γx ,

U ∈ Gq(N,k) is this polynomial’s kernel.
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Related work

Theorem 1 (cont’d.)
Then

C ∶=
n−1
⋃
i=0

{αUqi ∶ α ∈ F∗qN}

is a cyclic code of size n qN−1
q−1 and minimum distance 2k − 2.
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Our goal

Our goal is to generalize their result in two directions:
Can we insert more orbits (i.e. more codewords)?
Can we use other types of subspace polynomials (and
hence cover more diverse values of length N)?
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Theorem 2
Let n and r be positive integers such that r ≤ qn − 1 and let

- γ1, ..., γr be distinct elements of F∗qn ,

- Ti(x) ∶= xqk + γq
i xq + γix for all i ∈ {1, ..., r},

- Ni be the degree of the splitting field of Ti for all
i ∈ {1, ..., r},

- Ui ⊆ FqNi be the kernel of Ti for all i ∈ {1, ..., r},
- N be the least common multiple of N1, ...,Nr .
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Theorem 2 (cont’d.)
Then the code C ⊆ Gq(N,k) given by

C =
r
⋃
i=1

{αUi ∶ α ∈ F∗qN}

is a cyclic code of size r qN−1
q−1 and the minimum distance 2k − 2.

Moreover, if γi and γj are conjugate as γi = γqm

j for some integer

m, then Ni = Nj and Ui = Uqm

j .
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A generalization: More codewords

Corollary 1

Let n be a positive integer and γ1 = γ, γ2 = γq, ..., γn = γqn−1 ∈ Fqn

for some irreducible element γ of Fqn . Then, by using the
construction in Theorem 2, we can produce a cyclic code of
size

n
qN − 1
q − 1

and the minimum distance 2k − 2. Resulting code is the same
with the one in Theorem 1.
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Remark 1
In the theorem of Ben-Sasson et al, it is assumed that
n is prime and γ is primitive. However, in Corollary 1 they are
not needed, only γ’s irreducibleness is assumed. Therefore,
Corollary 1 is also an improvement of their theorem.

Example 1
Let q = 2, n = 4 and k = 3. We can take γ ∈ F∗qn such that the
minimal polynomial of γ over Fq is x4 + x3 + x2 + x + 1. Here,
n = 4 is not a prime and γ is not primitive but we can apply
Corollary 1 (or Theorem 1) and thus obtain a cyclic code
C ⊆ Gq(12,3) of size 4(212 − 1) and the minimum distance 4.
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Remark 2
In Theorem 2, we can choose r as strictly larger than n.

Example 2
Let q = 3, n = 2 and k = 3. Also let γ ∈ F∗qn with the minimal
polynomial x2 + 2x + 2 over Fq.

Using Theorem 1 Using Theorem 2
Use: γ (and so γq) Use: γ1 = γ, γ2 = γq, γ3 = 2

Size= 2352−1
2 Size= 3352−1

2

Size has increased % 50.
The second code is containing the first one.
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Question
Consider the set

{xqk + θxq + γx ∶ θ, γ ∈ F∗qn}

for some positive integer n. How should we choose polynomials
from this set so that the collection of orbits of their kernels
forms a cyclic code of distance 2k − 2?
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Theorem 3
Consider a set P of polynomials

Ti(x) ∶= xqk + θixq + γix ∈ Fqn[x],1 ≤ i ≤ ∣P ∣

satisfying
θi ≠ 0 and γi ≠ 0,
θj
θi
≠ (γjθi

γiθj
)

M
when i ≠ j

where

M = (qgcd(n,k−1) − 1)gcd(k − 1,q − 1)
(q − 1)gcd(n,k − 1,q − 1) .
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Theorem 3 (cont’d.)
Also let

- Ni be the degree of the splitting field of Ti for all
i ∈ {1, ..., ∣P ∣},

- Ui ⊆ FqNi be the kernel of Ti for all i ∈ {1, ..., ∣P ∣},
- N be the least common multiple of N1, ...,N∣P∣.

Then the code C ⊆ Gq(N,k) given by

C =
∣P∣
⋃
i=1

{αUi ∶ α ∈ F∗qN}

is a cyclic code of size ∣P ∣q
N−1
q−1 and the distance 2k − 2.
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Remark 3

Theorem 2 is a special case of Theorem 3 with θi = γq
i and

∣P ∣ = r ≤ qn − 1. Notice that the assumption

θj

θi
≠ (

γjθi

γiθj
)

M

when i ≠ j

has been automatically satisfied due to the fact that qn − 1 can
not divide qk .
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Example 3
Let q = 2,n = 2 and k = 4. Then M = 1. Taking γi = 1 for all i ,
obtain

P = {x24 + θx2 + x ∶ θ ∈ F∗22},

it is chosen as in Theorem 3. Here, we obtain N1 = N2 = N3 = 30
and so

N = 30.

In that way we construct a cyclic code C ⊆ G2(30,4) of size
3(230 − 1) and minimum distance 6.
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Example 3 (Cont’d.)
Remark that, if we use Theorem 2 then we must have

P = {x24 + θ2x2 + θx ∶ θ ∈ F∗22}.

Then we obtain N1 = N2 = 14 and N3 = 30 and so

N = 210.

In that way we construct a cyclic code C ⊆ G2(210,4) of size
3(2210 − 1) and minimum distance 6.

Therefore, Theorem 3 give us an opportunity to construct
codes of different lengths.
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Finally...

Thank you very much
,
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