Improvement of the sunflower bound for 1-intersecting constant dimension subspace codes

Leo Storme

Ghent University Dept. of Mathematics Krijgslaan 281 9000 Ghent Belgium (joint work with D. Bartoli, A. Riet and P. Vandendriessche)

Istanbul, November 6, 2015

< 同 > < 回 > < 回 >

t-Intersecting constant dimension subspace code:

- Codewords are *k*-dimensional vector spaces.
- Distinct codewords intersect in *t*-dimensional vector spaces.

Classical example:

• **Sunflower:** all codewords pass through same *t*-dimensional vector space.

SUNFLOWER

LARGE *t*-INTERSECTING CONSTANT DIMENSION SUBSPACE CODES

THEOREM

Large t-intersecting constant dimension subspace codes are sunflowers.

lf

$$|C| > \left(\frac{q^k - q^t}{q - 1}\right)^2 + \left(\frac{q^k - q^t}{q - 1}\right) + 1,$$

then C is sunflower.

Conjecture:

Let *C* be *t*-intersecting constant dimension subspace code. If

$$|C| > q^k + q^{k-1} + \cdots + q + 1,$$

then C is sunflower.

< 17 >

3 ×

Code C of 1-intersecting 3-dimensional spaces in V(6, 2).

- **Conjecture:** If |C| > 15, then C is sunflower.
- Counterexample 1: (Etzion and Raviv) Code *C* of size 16 which is not sunflower.
- Counterexample 2: (Bartoli and Pavese) Code *C* of 1-intersecting 3-dimensional spaces in *V*(6,2) has size at most 20, and unique example of size 20.

• If

$$|\mathcal{C}| > \left(\frac{q^k - q^t}{q - 1}\right)^2 + \left(\frac{q^k - q^t}{q - 1}\right) + 1,$$

then C is sunflower.

• For *t* = 1, if

$$|\mathcal{C}| > \left(rac{q^k-q}{q-1}
ight)^2 + \left(rac{q^k-q}{q-1}
ight) + 1,$$

then *C* is sunflower.

• Question: Can this bound be improved?

・ 同 ト ・ ヨ ト ・ ヨ ト

Assumptions:

- C = 1-intersecting constant dimension code of k-spaces.
- C not sunflower.

$|\mathcal{C}| = \left(rac{q^k-q}{q-1} ight)^2 + \left(rac{q^k-q}{q-1} ight) + 1 - \delta,$

with

۲

$$\delta = q^{k-2}.$$

< 回 > < 回 > < 回 >

See codeword
$$c \in C$$
 as $PG(k - 1, q)$.
Define

$$S = \cup_{c \in C} c.$$

LEMMA

Point
$$P \in S$$
 belongs to at most $\frac{q^k-1}{q-1}$ codewords.

æ

・ロト ・聞 ト ・ ヨ ト ・ ヨ ト

NIVERSITE GENT

æ

LEMMA

If $|C| > (\frac{q^k-q}{q-1})^2$, then every codeword in *C* has at least one point in $\frac{q^k-1}{q-1}$ codewords.

Lemma

If point P lies in $\frac{q^k-1}{q-1}$ codewords, then line through P and other point of S is completely contained in S.

VIVERSITE.

æ

Lemma

If point P lies in
$$\frac{q^k-1}{q-1}$$
 codewords, then

$$|\mathcal{S}| = |\cup_{c\in C} c| = \left(\frac{q^k-q}{q-1}\right)^2 + \left(\frac{q^k-q}{q-1}\right) + 1.$$

REMARK:

$$\left(\frac{q^k-q}{q-1}\right)^2+\left(\frac{q^k-q}{q-1}\right)+1\neq |\mathsf{PG}(T,q)|.$$

$$|\mathsf{PG}(2k-2,q)| < |\mathcal{S}| < |\mathsf{PG}(2k-1,q)|.$$

ヘロト 人間 ト 人 ヨ ト 人 ヨ ト

GENI

æ

Lemma

If more than $q^{2k-3} + q^{2k-4} + \cdots + q + 1$ points of *S* lie in $\frac{q^k-1}{q-1}$ codewords, then (2k-2)-dimensional subspace contained in *S*.

(日)

UNIVERSITE

æ

Eventually

$$\mathsf{PG}(2k-2,q) = \langle c, P_1, \ldots, P_{k-1} \rangle \subset \mathcal{S}.$$

But

$$|\mathcal{S}| > |\mathsf{PG}(2k-2,q)|.$$

$$|\mathcal{S} \setminus \mathsf{PG}(2k-2,q)| pprox q^{2k-3}$$

(日)

- If point of $S \setminus PG(2k 2, q)$ in $\frac{q^k 1}{q 1}$ codewords, then $PG(2k 1, q) \subset S$. (FALSE)
- So all points of $S \setminus PG(2k 2, q)$ in less than $\frac{q^k 1}{q 1}$ codewords.

- 4 同 1 - 4 日 1 - 4 日 1

NIVERSITE GENT

- All points of S \ PG(2k 2, q) in less than ^{qk-1}/_{q-1} codewords.
 |S \ PG(2k 2, q)| ≈ q^{2k-3}.
- So number of points of S in ^{qk-1}/_{q-1} codewords, is approximately q^{2k-4}. (TOO SMALL)

A (10) A (10)

THEOREM (BARTOLI, RIET, STORME, VANDENDRIESSCHE)

Every 1-intersecting constant dimension code C of codewords of dimension k of size

$$|C| = \left(\frac{q^k - q}{q - 1}\right)^2 + \left(\frac{q^k - q}{q - 1}\right) + 1 - \delta,$$

with

$$\delta = q^{k-2},$$

is sunflower.

Thank you very much for your attention!

