

Real World Network Coding

Frank Fitzek

Communications Networks

coordinator

serial entrepreneur

Evolution of Coding

3

Gaussian elimination $n \ge n$ matrix requires $An^3 + Bn^2 + Cn$ operations.

Gaussian elimination $n \ge n$ matrix requires $An^3 + Bn^2 + Cn$ operations.

5

Gaussian elimination $n \ge n$ matrix requires $An^3 + Bn^2 + Cn$ operations.

6

$$\begin{pmatrix} C_1 \\ \vdots \\ C_G \\ C_{G+1} \\ \vdots \\ C_K \end{pmatrix} = \begin{pmatrix} \alpha_{1,1} & \cdots & \alpha_{1,G} \\ \vdots & \ddots & \vdots \\ \alpha_{G,1} & \cdots & \alpha_{G,G} \\ \alpha_{G+1,1} & \cdots & \alpha_{G+1,G} \\ \vdots & \ddots & \vdots \\ \alpha_{K,1} & \cdots & \alpha_{K,G} \end{pmatrix} \begin{pmatrix} P_1 \\ \vdots \\ P_G \end{pmatrix}$$

Rateless code: can output any number of coded packets. (such as Fountain codes, but better than RS)

RLNC: The Technology

Real time video streaming, TCP, SDN...

Edge caches, wireless mesh, reliable multicast, satellites, small relay topologies, SDN...

Multi-source streaming Multipath TCP, channel bundling, heterogeneous network combining, SDN...

Distributed cloud, SDN, advanced mesh (IoT, car2car, M2M, smart grid) ...

5G LAB GERMANY

5G MULTICAST

Norm – Reliable Multicast

Reliable Multicast

5G CODED POINT TO POINT

Sliding Window

Coded TCP

Histogram of CTCP-TCP Data Pairs

Pacific Island Testbed

Fig. 1. TCP/NC network topology

http://arxiv.org/pdf/1506.01048v1.pdf

Pacific Island Testbed

5G LAB GERMANY

5G WIRELESS MESH

Wireless Mesh

Recoding

No need for signalling!

Some Real Stuff

5G SOFTWARE DEFINED NETWORK

Virtual SDN testbed

End to End Coding Schemes: Store and Forward

Hop by Hop Coding Scheme: Store and Forward

Network Coding Scheme: Compute and Forward

$$P_{RLNC} = G \cdot H \cdot \left(\frac{1}{1-\epsilon}\right) \qquad D_{RLNC} = \left(G \cdot \left(\frac{1}{1-\epsilon}\right) + (H-1)\right) \cdot d_p$$

Latency gain of e2e vs RLNC (left) and hbh vs RLNC(right)

5G LAB GERMANY

5G AGILE CLOUD

Cloud Evolution

Single/Static

Distributed/Static

Distributed/Agile

Example: Distributed Cloud

- Heterogenity (4 clouds)
- Clouds behave differently

- Speed-Up (5 clouds)
- RLNC does not need full degree of freedom

5G LAB

GERMANY

- M. Sipos, F.H.P. Fitzek, D. Lucani, and M.V. Pedersen, "Dynamic Allocation and Efficient Distribution of Data Among Multiple Clouds Using Network Coding," in IEEE International Conference on Cloud Networking (IEEE CloudNet'14), Oct. 2014.
- M. Sipos, F.H.P. Fitzek, D. Lucani, and M.V. Pedersen, "Distributed Cloud Storage Using Network Coding," in IEEE Consumer Communication and Networking Conference, Jan. 2014.

Mobile Edge Cloud / Micro Cloud / Cloud

Dynamic Distributed Cloud

 F. Fitzek, T. Toth, A. Szabados, M.V. Pedersen, D. Lucani, M. Sipos, H. Charaf, and M. Medard, "Implementation and Performance Evaluation of Distributed Cloud Storage Solutions using Random Linear Network Coding," in IEEE International Conference on Communications - Cooperative and Cognitive Network Workshop - CoCoNet6, June 2014.

Data Survival over Time

Data Survival (large # of runs)

5G LAB GERMANY

5G COMPUTING

KODO Coding Speeds

ustry trend

F=GF(2^8) P=1MB	Kodo 17 MT (sparse=0.5)	Kodo 17 (sparse=0.5)	ISA-L	Jerasure 2.0	OpenFEC
G=8 (12)	3096/2980	3096/2980	2255/2635	1250/1365	353/292
G=9 (13)	2542/2559	2752/2898	1961/2252	1096/1185	305/264
G=10 (15)	2136/2227	2025/2126	1724/1796	997/1072	285/245
G=16 (24)	1807/1496	1264/1239	1075/1180	628/644	179/160
G=30 (45)	950/647	672/513	266/271	349/361	96/90
G=60 (90)	594/329	359/256	123/122	184/184	48/46
G=100 (150)	383/209	226/159	74/73	111/111	29/28
G=150 (225)	266/141	153/107	47/46	74/74	19/19

Measured on Intel(R) Core(TM) i7-4770 CPU @ 3.40GHz

Many-Core Implementation of Network Coding

On Raspberry Pi 2: 10x speed up over standard SIMD encoding by using 4 cores and cache optimization (generation size 1024)

Coding as an Additional Security Measure

Data on a given path/cloud acts as a cypher

Telescopic Codes

Design:

Multiple composite extension fields

Goal: reduce overhead, maintaining high performance, faster encoding/decoding

Different packets are encoded using different field sizes

Telescopic Codes: Decoder

Coded Packet 1	1	0	1	3	15	▶	1	0	1	3	15
Coded Packet 2	0	1	1	2	7		0	1	1	2	7
Coded Packet 4	0	0	1	0	3		0	0	1	0	3
Coded Packet 5	1	0	0	1	7		1	0	0	1	7
Coded Packet 7	1	0	0	0	13		1	0	0	0	13

Telescopic Codes: Decoder

Results

General Ideas

Fluid allocation of complexity

End devices agree on desired performance:

Independent from network

Chosen according to application requirement:

Network devices need only support a simple

Reduces overhead

Roughly 1 bit per coding coefficient

Key: code concatenation with different field sizes

General Structure

Received Packets before Decoding

Code		Decoding after receiving (coded packets)							
		n	n + 1	n + 2	n + 3				
	r = 4	93.87%	99.75%	99.99%	99.9997%				
Fulcru m	r = 7	99.22%	99.996%	99.99998%	99.99999992%				
	r = 10	99.90%	99.9999%	99.99999996%	99.99999999998 %				
RaptorQ*		99%	99.99%	99.9999%					

* Qualcomm. (2013, Dec.) Raptorq - the superior fec technology Available:

http://www.gualcomm.com/madia/documents/ranters_data