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DISTRIBUTED STORAGE SYSTEMS (DSS)

o Data centers worldwide experience about 3 million hours of outage
yearly.

o How do we secure data from getting lost during these outages,
without wasting valuable storage space?



DISTRIBUTED STORAGE SYSTEMS (DSS)

@ In a (linear) DSS with exact repair, a file is divided into k packets,
each packet identified with an element in an alphabet (field) A, and
distributed over n > k nodes in a network via a (linear) injection
Ak — A"

o If the content of no more than d — 1 nodes are erased, their content
can still be reconstructed.

@ In a general DSS, there is no guarantee that an erased node can be
recovered without restoring the entire file.

o In contrast, in a locally repairable system, few (< &) erasures can be
repaired by few (< r) other nodes.



COOPERATIVE LOCALLY REPAIRABLE CODES

GOPALAN et al., OGGIER et al., AND PAPAILIOPOULOS et al.

o A code C C A" with |C| = |A|¥ is said to have size n and rank k.

@ The minimum distance d is defined as
d = min{1X| : ICgapx| < [C1)-

® An (r,d)-cloud of the code C is Z C [n] such that the projection C|;
has rank < r and minimum distance > §.

C is a locally repairable code (LRC) with parameters (n, k, d, r,d), if every
node is contained in an (r,d)-cloud.




CODES REPAIRABLE AT MANY SCALES

OUR CONTRIBUTIONS

o Let (n,k,d) = ((nj, ki, di)i>0) be a finite sequence of triples,
coordinatewise decreasing.

DEFINITION (FREIJ-HOLLANTI ET AL, 2015+ )

An (ng, ko, dp)-code C is said to have recoverability

(n,k,d) = (nj, ki, di)i>o0

if for every x € [ng], there is X C [ng] with x € X such that C|x has
recoverability

(nit1, kit1, dit1)i>o0
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MATROIDS

DEFINITION

@ A matroid is a combinatorial structure that captures and generalises
notions of independence (for example linear independence, algebraic
independence, or acyclicity in graphs).

DEFINITION

Let E be a finite set, and 2F its power set. M = (p, E) is a matroid with a
rank function p : 2F — 7, if p has the following properties:

(R1) 0< p(X) < |X| forall X € 2F,
(R2) If X C Y e 2F then p(X) < p(Y),
(R3) If X, Y € 2E then p(X) +p(Y) > p(XUY)+p(XNY).

y

Matroids can also be defined via their independent sets, which are the
sets X C E with | X]| = p(X).



MATROIDS

MATROIDS FROM CODES

@ To a linear code (and more generally to any almost affine code)
C C A" corresponds a code Mg = (p, [n]), defined by

p(X) = dimA(C|X).
e The parameters (n, k, d) are matroid invariants, where k = p([n]) and

d=min{|X| : Y C Eand p(X\Y) < p(X)}



MATROIDS

WEIGHT ENUMERATORS AND TUTTE PLOYNOMIALS

@ An important invariant of linear codes is the weight enumerating

polynomial
W(C;x) = ZXW(C),
ceC

where w(c) is the number of non-zero letters in the code word c.
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MATROIDS

WEIGHT ENUMERATORS AND TUTTE PLOYNOMIALS

@ An important invariant of linear codes is the weight enumerating

polynomial
W(C; x) = ZXW(C),
ceC
where w(c) is the number of non-zero letters in the code word c.

@ Similarly, an important invariant of matroids is the Tutte polynomial

T(M;x,y) = Z(X — 1)PE)=PS)(y — 1)ISI=A(5)
SCE

which is in a precise sense the most general polynomial that is
recursively defined via deletion and contraction identities.
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MATROIDS

WEIGHT ENUMERATORS AND TUTTE PLOYNOMIALS

The weight enumerator W(C; x) of a code and the Tutte polynomial
T(Mgc; x,y) of the associated matroid are related via

THEOREM (GREENE, 1976)

' 1—z 'z

W(C;z) = 2" 51— 2)kT (I\/Ic' 1+(g-1)z l) 5

where C is a linear code over F.
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MATROIDS

CIRCUITS AND FLATS

o A dependent set X is a circuit if all proper subsets of X are
independent.

o Aset Xisa flatif p(XUy)=p(X)+1forally € (E\X). Aflatis
cyclic if it is a union of circuits.

@ In the setting of codes, the cyclic flats Z are “repair sets’, meaning
that erasures inside Z can be repaired by other nodes in Z, but Z
itself cannot repair any node outside Z.
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MATROIDS

LATTICE OF FLATS

@ The collection of flats of a matroid is denoted by £(M), and is a
geometric lattice ordered under inclusion.

o A lattice is geometric if it is graded, atomic, and submodular, meaning
that

p(x) +p(y) = p(x Ay) + p(x Vy)

o Any geometric lattice is isomorphic to £L(M) for some matroid M.
o The lattice £(M) determines M up to isomorphism.
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MATROIDS

LATTICE OF CYCLIC FLATS

@ The collection of cyclic flats of a matroid is denoted by Z(M), and is
a lattice ordered under inclusion.
o Any lattice is isomorphic to Z(M) for some matroid M.
o The lattice Z(M) together with its rank function, determines M.
o The elements of Z(M) must be thought of as sets, rather than
abstract elements.
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MATROIDS

CONFIGURATIONS

o The configuration IC(M) of M is the triple (K(M), #, p), where K(M)
is the abstract lattice Z(M), and (#, p) are the cardinality and rank
function on its nodes.

o KC(M) does not determine M.

o However, (M) does determine the Tutte polynomial T(M;x,y).
(Eberhardt, 2014)
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MATROIDS

CONFIGURATIONS

THEOREM (EBERHARDT 2014, FREIJ-HOLLANTI ET AL 2015-+)
Let M be a matroid, with configuration (K(M),#, p), and

n(S) = #S — p(9).
Then

T(Mix,y)= Y (x— 1)< )y —1)7).

SeK(M)
p(S)—p(R)—1
S—#R ;
(125 (45 )
R<S i=1

T>S j=1

n(T)—n(S)
(1 XY (F)e- 1)f) .
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MAXIMUM DISTANCE SEPARABLE (MDS) CODES

THEOREM (SINGLETON, 1964)
For any linear code of length n, dimension k and minimum distance d, over
an arbitrary alphabet A, the inequality
d<n—k+1
holds.
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MAXIMUM DISTANCE SEPARABLE (MDS) CODES

THEOREM (SINGLETON, 1964)

For any linear code of length n, dimension k and minimum distance d, over
an arbitrary alphabet A, the inequality

d<n—k+1
holds.

@ A code achieving equality in the Singleton bound is an MDS-code.

o If C is an MDS-code, then the matroid M is the uniform matroid U,’,‘,
with Z(UE) = {0, [n]} and p([n]) = k.

e Explicit (linear) constructions of MDS-codes exist over all alphabets
A =T, where |A| = ¢ > nis a prime power.
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CODES REPAIRABLE AT MANY SCALES

OUR CONTRIBUTIONS

o The parameters (n, k,d) = (nj, ki, d;)i>o are matroid invariants.

@ The Singleton bound can be generalised to matroids, and sharpened
for codes and matroids with repairability (n, k, d):

THEOREM (FREIJ-HOLLANTI ET AL, 2015+)

Let M be a matroid with repairability (n,k,d). Then

k.
di(M) < ni — ki +1— (njs1 — ki) qk_J _ 1) ’
I+

for every i > 0. Moreover, for every i > 0 we have

5 < Sl kl+1

nj — nl+1
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CODES REPAIRABLE AT MANY SCALES

OUR CONTRIBUTIONS

e The parameters (n, k,d) = (nj, k;, dj)i>o are invariants of the
configuration /C(M).

e Matroids (almost) achieving equality in the Singleton bounds have a

nicely structured configuration:

THEOREM (FREIJ-HOLLANTI ET AL, 2015+)
Let M be a matroid with repairability (n,k,d), with

ki
n—ki+1— (n,-+1 — ki-|—1) ’Vk _1-‘ < dl(M)
I+

We call such a matroid locally nearly MDS. Then KC(M),, k] s @

truncated Boolean lattice, generated by [ nf’llw atoms of rank ki1,

truncated at rank k;.
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CODES REPAIRABLE AT MANY SCALES

WEIGHT ENUMERATION

o Let M be a locally nearly MDS matroid with repairability (n, k, d).

@ Then T(M;x, y) can be written as a sum of polynomials

T(M;x,y) Z Z Ti(M; x, y).
i>0  SeK(M)
kiy1<p(S)<ki

o Each of the terms is a sum over a truncated Boolean lattice, and can
be written out explicitly without reference to the lattice K.
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CODES REPAIRABLE AT MANY SCALES

WEIGHT ENUMERATION

@ Let C be a locally nearly MDS code. Then

ki
nj—ki+1— (n,-+1 = k,‘+1) ’Vk—l—‘ < d,(M)
i+

o Through the identity

W(C;z) = z”_k(l — z)kT (Mc; M, l) 5

1—~ z

we get an explicit combinatorial formula for the weight enumerating
polynomial, for any code with repairability (n, k,d).
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CODES REPAIRABLE AT MANY SCALES

MATROID CONSTRUCTIONS

e For given parameters (n;j, ki, ki+1, di+1), satisfying

ki
n; — k,’ + 1-— (n;+1 — kH_]_) ’Vk—l-‘
i+

< d;(M)
ki
<nj —ki+1—(njt1— kit1) Gk—-‘ - 1) ;
i+1
it is non-trivial to determine whether matroids with these parameters
exist.

e Wang and Zhang (2015) and Westerback et al (2015+) give sufficient
and necessary conditions, using linear programming and extremal
graph theory respectively.

o When such matroids exist, they can be constructed explicitly via their
lattice of cyclic flats.
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CODES REPAIRABLE AT MANY SCALES

CODE CONSTRUCTIONS

o A gammoid is a matroid associated to a directed graph through flows,
and are always representable as linear codes. (Oxley, 1961)

@ The locally nearly MDS matroids can be constructed to be isomorphic
to gammoids, associated to blow-ups of their configuration poset.

@ Thus, we obtain linear codes with repairability (n, k,d), when (n, k,d)
satisfy the generalised Singleton bounds, rate inequalities and certain
congruences.

o If the generalised Singleton bounds are “almost” met with equality, we
can also explicitly compute their weight enumeration in terms of

(n, k,d).
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