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LRC on multiple scales

Based on joint work with Camilla Hollanti, Thomas Westerbäck and Toni
Ernvall
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Distributed storage systems (DSS)

Data centers worldwide experience about 3 million hours of outage
yearly.

How do we secure data from getting lost during these outages,
without wasting valuable storage space?
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Distributed storage systems (DSS)

In a (linear) DSS with exact repair, a file is divided into k packets,
each packet identified with an element in an alphabet (field) A, and
distributed over n ≥ k nodes in a network via a (linear) injection
Ak → An.
If the content of no more than d − 1 nodes are erased, their content
can still be reconstructed.
In a general DSS, there is no guarantee that an erased node can be
recovered without restoring the entire file.
In contrast, in a locally repairable system, few (< δ) erasures can be
repaired by few (≤ r) other nodes.
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Cooperative locally repairable codes
Gopalan et al., Oggier et al., and Papailiopoulos et al.

A code C ⊆ An with |C| = |A|k is said to have size n and rank k .
The minimum distance d is defined as

d = min{|X | : |C|[n]\X | < |C|}.

An (r , δ)-cloud of the code C is Z ⊆ [n] such that the projection C|Z
has rank ≤ r and minimum distance ≥ δ.

Definition
C is a locally repairable code (LRC) with parameters (n, k , d , r , δ), if every
node is contained in an (r , δ)-cloud.
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Codes repairable at many scales
Our contributions

Let (n, k,d) = ((ni , ki , di )i≥0) be a finite sequence of triples,
coordinatewise decreasing.

Definition (Freij-Hollanti et al, 2015+)

An (n0, k0, d0)-code C is said to have recoverability

(n, k,d) = (ni , ki , di )i≥0

if for every x ∈ [n0], there is X ⊆ [n0] with x ∈ X such that C|X has
recoverability

(ni+1, ki+1, di+1)i≥0
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Matroids
Definition

A matroid is a combinatorial structure that captures and generalises
notions of independence (for example linear independence, algebraic
independence, or acyclicity in graphs).

Definition

Let E be a finite set, and 2E its power set. M = (ρ,E ) is a matroid with a
rank function ρ : 2E → Z, if ρ has the following properties:

(R1) 0 ≤ ρ(X ) ≤ |X | for all X ∈ 2E ,
(R2) If X ⊆ Y ∈ 2E then ρ(X ) ≤ ρ(Y ),
(R3) If X ,Y ∈ 2E then ρ(X ) + ρ(Y ) ≥ ρ(X ∪ Y ) + ρ(X ∩ Y ).

Matroids can also be defined via their independent sets, which are the
sets X ⊆ E with |X | = ρ(X ).
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Matroids
Matroids from codes

To a linear code (and more generally to any almost affine code)
C ⊆ An corresponds a code MC = (ρ, [n]), defined by

ρ(X ) = dimA(C|X ).

The parameters (n, k , d) are matroid invariants, where k = ρ([n]) and

d = min{ |X | : Y ( E and ρ(X \ Y ) < ρ(X )}
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Matroids
Weight enumerators and Tutte ploynomials

An important invariant of linear codes is the weight enumerating
polynomial

W (C; x) =
∑
c∈C

xw(c),

where w(c) is the number of non-zero letters in the code word c .

Similarly, an important invariant of matroids is the Tutte polynomial

T (M; x , y) =
∑
S⊆E

(x − 1)ρ(E)−ρ(S)(y − 1)|S|−ρ(S),

which is in a precise sense the most general polynomial that is
recursively defined via deletion and contraction identities.
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Matroids
Weight enumerators and Tutte ploynomials

The weight enumerator W (C; x) of a code and the Tutte polynomial
T (MC ; x , y) of the associated matroid are related via

Theorem (Greene, 1976)

W (C; z) = zn−k(1− z)kT

(
MC ;

1+ (q − 1)z
1− z

,
1
z

)
,

where C is a linear code over Fq.
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Matroids
Circuits and flats

A dependent set X is a circuit if all proper subsets of X are
independent.
A set X is a flat if ρ(X ∪ y) = ρ(X ) + 1 for all y ∈ (E \ X ). A flat is
cyclic if it is a union of circuits.
In the setting of codes, the cyclic flats Z are “repair sets”, meaning
that erasures inside Z can be repaired by other nodes in Z , but Z
itself cannot repair any node outside Z .
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Matroids
Lattice of flats

The collection of flats of a matroid is denoted by L(M), and is a
geometric lattice ordered under inclusion.

A lattice is geometric if it is graded, atomic, and submodular, meaning
that

ρ(x) + ρ(y) ≥ ρ(x ∧ y) + ρ(x ∨ y)

Any geometric lattice is isomorphic to L(M) for some matroid M.
The lattice L(M) determines M up to isomorphism.
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Matroids
Lattice of cyclic flats

The collection of cyclic flats of a matroid is denoted by Z(M), and is
a lattice ordered under inclusion.

Any lattice is isomorphic to Z(M) for some matroid M.
The lattice Z(M) together with its rank function, determines M.
The elements of Z(M) must be thought of as sets, rather than
abstract elements.
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Matroids
Configurations

The configuration K(M) of M is the triple (K (M),#, ρ), where K (M)
is the abstract lattice Z(M), and (#, ρ) are the cardinality and rank
function on its nodes.

K(M) does not determine M.
However, K(M) does determine the Tutte polynomial T (M; x , y).
(Eberhardt, 2014)
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Matroids
Configurations

Theorem (Eberhardt 2014, Freij-Hollanti et al 2015+)

Let M be a matroid, with configuration (K (M),#, ρ), and

η(S) = #S − ρ(S).

Then

T (M; x , y) =
∑

S∈K(M)

(x − 1)k−ρ(S)(y − 1)η(S)·

1+
∑
RlS

ρ(S)−ρ(R)−1∑
i=1

(
#S −#R

i

)
(x − 1)i

 ·
1+

∑
TmS

η(T )−η(S)∑
j=1

(
#T −#S

j

)
(y − 1)−j

 .
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Maximum Distance Separable (MDS) codes

Theorem (Singleton, 1964)

For any linear code of length n, dimension k and minimum distance d , over
an arbitrary alphabet A, the inequality

d ≤ n − k + 1

holds.

A code achieving equality in the Singleton bound is an MDS-code.
If C is an MDS-code, then the matroid MC is the uniform matroid Uk

n ,
with Z(Uk

n ) = {∅, [n]} and ρ([n]) = k .
Explicit (linear) constructions of MDS-codes exist over all alphabets
A = Fq where |A| = q ≥ n is a prime power.
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Codes repairable at many scales
Our contributions

The parameters (n, k,d) = (ni , ki , di )i≥0 are matroid invariants.
The Singleton bound can be generalised to matroids, and sharpened
for codes and matroids with repairability (n, k,d):

Theorem (Freij-Hollanti et al, 2015+)

Let M be a matroid with repairability (n, k,d). Then

di (M) ≤ ni − ki + 1− (ni+1 − ki+1)

(⌈
ki
ki+1

⌉
− 1
)
,

for every i ≥ 0. Moreover, for every i ≥ 0 we have

ki
ni
≤ ki+1

ni+1
.
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Codes repairable at many scales
Our contributions

The parameters (n, k,d) = (ni , ki , di )i≥0 are invariants of the
configuration K(M).
Matroids (almost) achieving equality in the Singleton bounds have a
nicely structured configuration:

Theorem (Freij-Hollanti et al, 2015+)

Let M be a matroid with repairability (n, k,d), with

ni − ki + 1− (ni+1 − ki+1)

⌈
ki
ki+1

⌉
≤ di (M).

We call such a matroid locally nearly MDS. Then K(M)[ki+1,ki ] is a

truncated Boolean lattice, generated by
⌈

ni
ni+1

⌉
atoms of rank ki+1,

truncated at rank ki .
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Codes repairable at many scales
Weight enumeration

Let M be a locally nearly MDS matroid with repairability (n, k,d).
Then T (M; x , y) can be written as a sum of polynomials

T (M; x , y) =
∑
i≥0

∑
S∈K(M)

ki+1≤ρ(S)<ki

Ti (M; x , y).

Each of the terms is a sum over a truncated Boolean lattice, and can
be written out explicitly without reference to the lattice K .
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Codes repairable at many scales
Weight enumeration

Let C be a locally nearly MDS code. Then

ni − ki + 1− (ni+1 − ki+1)

⌈
ki
ki+1

⌉
≤ di (M).

Through the identity

W (C; z) = zn−k(1− z)kT

(
MC ;

1+ (q − 1)z
1− z

,
1
z

)
,

we get an explicit combinatorial formula for the weight enumerating
polynomial, for any code with repairability (n, k,d).
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Codes repairable at many scales
Matroid constructions

For given parameters (ni , ki , ki+1, di+1), satisfying

ni − ki + 1− (ni+1 − ki+1)

⌈
ki
ki+1

⌉
≤ di (M)

≤ ni − ki + 1− (ni+1 − ki+1)

(⌈
ki
ki+1

⌉
− 1
)
,

it is non-trivial to determine whether matroids with these parameters
exist.
Wang and Zhang (2015) and Westerbäck et al (2015+) give sufficient
and necessary conditions, using linear programming and extremal
graph theory respectively.
When such matroids exist, they can be constructed explicitly via their
lattice of cyclic flats.
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Codes repairable at many scales
Code constructions

A gammoid is a matroid associated to a directed graph through flows,
and are always representable as linear codes. (Oxley, 1961)
The locally nearly MDS matroids can be constructed to be isomorphic
to gammoids, associated to blow-ups of their configuration poset.
Thus, we obtain linear codes with repairability (n, k,d), when (n, k,d)
satisfy the generalised Singleton bounds, rate inequalities and certain
congruences.
If the generalised Singleton bounds are “almost” met with equality, we
can also explicitly compute their weight enumeration in terms of
(n, k,d).
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