

İstanbul Teknik Üniversitesi)) Telsiz Haberleşme Araştırma Laboratuvarı

Network Coded Cooperation Testbed: Implementation And Performance Results

DARNEC'2015

Selahattin Gökceli

(Joint work with Semiha Tedik Başaran and Güneş Karabulut Kurt)

ISTANBUL TECHNICAL UNIVERSITY

DEPARTMENT OF ELECTRONICS AND COMMUNICATIONS ENGINEERING

This work is supported by TUBITAK under Grant 113E294.

Outline

- Motivation
- System Model
- Testbed Details
 - NCC System
 - Image Transmission Structure
- Test Results

Motivation

Current status of Wireless Networks-5G

- Resource scarcity problems
- Increasing number of users
- Constant (or decreasing) radio resources
- Increasing data rate demands

System Model(1/2)

Set-up includes three source nodes (M =3), one destination node (P = 1) and one relay node (K = 1).

-OFDMA uplink transmission is realized in the broadcast phase .

-In the relaying phase, the relay node uses all N=1200 subcarriers.

-X_i and X_k signals from source nodes and relay node are transmitted with 4-QAM modulation, respectively where (i = 1,...,M and k = 1,...,K).

System Model(2/2)

The global coding matrix of the total system in GF(4) is set as

$$\mathbf{Z} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{pmatrix} \begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 1 & 1 \\ \end{vmatrix}^{T}$$

- Although we use a single physical device as the relay node, we use the same subcarrier set for the relaying phase (i.e. 320 subcarriers).
- Three linear combinations of the received source symbols are generated at the relay node. Hence, the coding matrix becomes of dimension 3x6.
- In the end, a cooperative detection rule is used at the destination node.

Testbed Details (1/14)

Hardware Components:

- NI USRP-2921: Source and Destination Nodes, Instantaneous bandwidth up to 20 MHz
- NI PXIe-1082 Chassis:
 - NI PXIe-5644R VST: Relay Node,
 - Instantaneous bandwidth up to 80 MHz
 - NI PXI-6683: Clock Signal Source

Testbed Details (2/14)

Hardware Components:

Testbed Details (3/14)

Synchronization Solution:

- Three external 10 MHz signals are provided by NI
 PXI-6683 Timing and Synchronization Module
- These signals are transmitted to two source nodes and destination node via cables
- Remaining source node receives synchronization signal through MIMO cable
- Synchronization configuration in code

Testbed Details (4/14)

Software Components:

-LabVIEW Software: Visual Programming Language,
Programming with Virtual Instruments (VI)
-Timed Flat Sequence Structure: Main VI of the code,
consists of:

- -Source, relay and destination node SubVI
- -Network coding and decoding SubVI

Testbed Details (5/14)

Timed Flat Sequence Structure VI Block Diagram:

Testbed Details (6/14)

Source node SubVI implementation structure:

Testbed Details (7/14)

Relay node SubVI implementation structure:

Testbed Details (8/14)

Destination node SubVI implementation structure:

Testbed Details (9/14)

- Example of LabVIEW implementation:
 - -Relay SubVI's transmitter code:
 - -RFSG VI
 - -Modulation Toolkit VI
 - -Signal Processing Library VI
 - -Array functions

Testbed Details (10/14)

Correspondent SubVI:

Testbed Details (11/14)

Network Decoding and ML Estimator SubVI:

Testbed Details (12/14)

Image Transmission Implementation:

-Packet Transmission Algorithm:

-Dividing 100x100 pixel images to packets

-Index Portion: Shows packet's index number, %5 of the frame length

-At Rx, by using index portion, packets are determined and put in right order to form image

Testbed Details (13/14)

OFDMA Frame Structure:

	Subcarrier Index						
	0-59	60-419	420-599	600	601-780	781-1140	1141-1199
	ZP	Info+Reference	Info+Reference	DC	Info+Reference	Info+Reference	ZP
	Sequence						Sequence
S_1	60 Samples	360 Samples	0 Sequence	1 Sample	0 Sequence	0 Sequence	59 Samples
	0 Sequence		180 Samples		180 Samples	360 Samples	0 Sequence
S_2	60 Samples	0 Sequence	190 Samplas	1 Sample	180 Samples	0 Sequence	59 Samples
	0 Sequence	360 Samples	160 Samples			360 samples	0 Sequence
S_3	60 Samples	0 Sequence	0 Sequence	1 Comple	0 Sequence	360 Samples	59 Samples
	0 Sequence	360 Samples	180 Samples	i Sample	180 Samples		0 Sequence

Testbed Details (14/14)

Set-up Parameters:

Carrier frequency	2.45 GHz
I/Q data rate	1 MS/sec
Bandwidth	1 MHz
Number of bits used in one frame	2080 bits
Number of 4-QAM symbols	1040 samples
Total number of subcarriers of the one user data portion	320 samples
Number of reference subcarriers	40 samples
Number of source nodes	3
Number of relay nodes	1
Number of destination nodes	2
Zero padding length	120 samples
DFT length (N)	1200 samples
CP length	300 samples
Distances of nodes	75 cm/ 90 cm

Test Results (1/5)

Received 4-QAM Constellation Diagrams:

Test Results (2/5)

NCC System Test Results: **Relaying Phase** 90 cm 75 cm Gain **Broadcast** Phase 75 cm 90 cm Relay Destination Source Source BER EVM BER EVM BER Destination Source GainSource EVM BER EVM SI 2.8×10^{-4} 29.62 1.3×10^{-3} 36.05 6×10^{-3} 37.23 1.99 $\times 10^{-2}$ 44.78 S1 S2 3×10^{-4} 30.32 1.3×10^{-3} 35.96 D_1 D_1 S2 2×10^{-2} 42 3.7×10^{-2} 51.18 2.1×10^{-4} 29.99 1.7×10^{-3} 36.76 S3 -23 dBm 2.9×10^{-2} 45.04 4.5×10^{-2} 55.26 S3 2.4×10^{-2} 51.6 2.5×10^{-2} 52.28 S1 Network Decoder Gain $1 \, \mathrm{dB}$ 2×10^{-2} 50.38 3.7 $\times 10^{-2}$ 55.73 S2 D_2 Destination Source Source 75 cm-BER 90 cm-BER Relay 3×10^{-2} 52.69 3.9×10^{-2} 56.33 S3 S_1 8×10^{-4} 6×10^{-3} S1 0 8.49 0 8.63 2.5×10^{-3} 3.24×10^{-2} D_1 S2 R 3.1×10^{-5} 14.5 2.4×10^{-5} 13.26 S2 3×10^{-3} 3.7×10^{-2} S_3 -23 dBm S3 0 18.21 3×10^{-5} 19

Test Results (3/5)

Link performance comparison for S3 data at 4 dB gain. The relay gain is -23 dBm.

Test Results (4/5)

BER performance comparison of the links in the image tranmission implementation

	S ₁	S_2	S ₃
Direct Link	$5.39 imes 10^{-5}$	$6.49 imes 10^{-4}$	4.42×10^{-4}
S-R Link	2×10^{-6}	$4.1 imes 10^{-6}$	$6.96 imes 10^{-5}$
Network Decoder	1.95×10^{-6}	1.14×10^{-5}	1.2×10^{-4}

Test Results (5/5)

Received image at direct link and network decoder:

Conclusions

Provide efficient usage of limited resources

- NCC is very effective on improvement of transmission quality of OFDMA based transmission
- Reliable communications against imperfect effects of wireless fading channel
- Suitable for applications such as multimedia transmission

Thank you!

This work is supported by TUBITAK under Grant 113E294 & COST IC1104