Designs on which the unitary group U(3,3) acts transitively

Andrea Švob (asvob@math.uniri.hr) Department of Mathematics, University of Rijeka, Croatia (Joint work with Dean Crnković and Vedrana Mikulić Crnković)

Darnec15

November 6, 2015

UNIVERSITY OF RUIE DEPARTMENT OF MATHEMATICS

A *t*-(*v*, *k*, λ) **design** is a finite incidence structure $\mathcal{D} = (\mathcal{P}, \mathcal{B}, \mathcal{I})$ satisfying the following requirements:

$$|\mathcal{P}| = v,$$

2 every element of \mathcal{B} is incident with exactly k elements of \mathcal{P} ,

(a) every *t* elements of \mathcal{P} are incident with exactly λ elements of \mathcal{B} .

Every element of \mathcal{P} is incident with exactly $r = \frac{\lambda(\nu-1)}{k-1}$ elements of \mathcal{B} .

The number of blocks is denoted by b.

If b = v (or equivalently k = r) then the design is called **symmetric**.

- A 2- (v, k, λ) design is called a block design.
- If \mathcal{D} is a *t*-design, then it is also a *s*-design, for $1 \leq s \leq t 1$.
- An **incidence matrix** of a design D is a matrix $A = [a_{ij}]$ where $a_{ij} = 1$ if *j*th point is incident with the *i*th block and $a_{ij} = 0$ otherwise.

J. D. Key, J. Moori:

• Construction method of primitive symmetric designs (and regular graphs) for which a stabilizer of a point and a stabilizer of a block are conjugate.

Theorem 1 [D. Crnković, V. Mikulić Crnković]

Let G be a finite permutation group acting primitively on the sets Ω_1 and Ω_2 of size m and n, respectively. Let $\alpha \in \Omega_1$ and $\Delta_2 = \bigcup_{i=1}^s \delta_i G_{\alpha}$, where $\delta_1, ..., \delta_s \in \Omega_2$ are representatives of distinct G_{α} -orbits. If $\Delta_2 \neq \Omega_2$ and

$$\mathcal{B} = \{\Delta_2 g : g \in G\},\$$

then $\mathcal{D}(G, \alpha, \delta_1, ..., \delta_s) = (\Omega_2, \mathcal{B})$ is a design 1- $(n, |\Delta_2|, \sum_{i=1}^s |\alpha G_{\delta_i}|)$ with *m* blocks, and *G* acts as an automorphism group, primitively on points and blocks of the design.

This construction gives us all 1-designs on which the group G acts primitively on points and blocks.

Corollary 1

If a group G acts primitively on the points and the blocks of a 1-design \mathcal{D} , then \mathcal{D} can be obtained as described in Theorem 1, *i.e.*, such that Δ_2 is a union of \mathcal{G}_{α} -orbits.

Theorem 2 [D. Crnković, V. Mikulić Crnković, AŠ]

Let G be a finite permutation group **acting transitively** on the sets Ω_1 and Ω_2 of size m and n, respectively. Let $\alpha \in \Omega_1$ and $\Delta_2 = \bigcup_{i=1}^s \delta_i G_{\alpha}$, where $\delta_1, ..., \delta_s \in \Omega_2$ are representatives of distinct G_{α} -orbits. If $\Delta_2 \neq \Omega_2$ and

$$\mathcal{B} = \{\Delta_2 g : g \in G\},\$$

then the incidence structure $\mathcal{D}(G, \alpha, \delta_1, ..., \delta_s) = (\Omega_2, \mathcal{B})$ is a 1- $(n, |\Delta_2|, \frac{|G_{\alpha}|}{|G_{\Delta_2}|} \sum_{i=1}^s |\alpha G_{\delta_i}|)$ design with $\frac{m \cdot |G_{\alpha}|}{|G_{\Delta_2}|}$ blocks. Then the group $H \cong G / \bigcap_{x \in \Omega_2} G_x$ acts as an automorphism group on (Ω_2, \mathcal{B}) , transitively on points and blocks of the design.

Corollary 2

If a group G acts transitively on the points and the blocks of a 1-design \mathcal{D} , then \mathcal{D} can be obtained as described in the Theorem 2, i.e., such that Δ_2 is a union of G_{α} -orbits.

Using the described approach a number of 2-designs and strongly regular graphs from the groups U(3,3), U(3,4), U(3,5), U(3,7), U(4,2), U(4,3), U(5,2), L(2,32), L(2,49), L(3,5), L(4,3) and S(6,2) have been constructed.

able	Properties	s of the s	subgrou	ps of the group \mathcal{L}	/(3,3
	Structure	Order	Index	Size of the class]

Ta 3)

Structure	Order	Index	Size of the class
1	1	6048	1
Z_2	2	3024	63
Z ₃	3	2016	28
Z ₃	3	2016	336
<i>Z</i> ₇	7	864	288
Z_4	4	1512	63
$Z_2 \times Z_2$	4	1512	63
Z_4	4	1512	189
Z_6	6	1008	252
S_3	6	1008	336
$Z_3 \times Z_3$	9	672	112
$Z_7 : Z_3$	21	288	288
Q_8	8	756	63
D_8	8	756	189
$Z_4 imes Z_2$	8	756	189
Z_8	8	756	378
Z_{12}	12	504	252
<i>A</i> ₄	12	504	252

Transitive designs from the group U(3, 3)10 / 20

Table:	Properties	of the	subgroups	of the	group	U(3	, 3))
--------	------------	--------	-----------	--------	-------	-----	------	---

Structure	Size	Index	Size of the class
$Z_3 \times S_3$	18	336	336
$(Z_3 \times Z_3) : Z_3$	27	224	28
$(Z_4 \times Z_2)$: Z_2	16	378	63
$Z_4 imes Z_4$	16	378	63
$Z_8: Z_2$	16	378	189
<i>SL</i> (2, 3)	24	252	63
S_4	24	252	252
$Z_3 : Z_8$	24	252	252
$((Z_3 \times Z_3) : Z_3) : Z_2$	54	112	28
$(Z_4 \times Z_4) : Z_2$	32	189	189
$(Z_4 \times Z_4) : Z_3$	48	126	63
$SL(2,3): Z_2$	48	126	63
$((Z_3 \times Z_3) : Z_3) : Z_4$	108	56	28
<i>PSL</i> (3, 2)	168	36	36
$((Z_4 \times Z_4) : Z_3) : Z_2$	96	63	63
$SL(2,3): Z_4$	96	63	63
$((Z_3 \times Z_3) : Z_3) : Z_8$	216	28	28
<i>PSU</i> (3,3)	6048	1	1

Transitive designs from the group U(3, 3)

In order to obtain **block designs** we have to make some basic steps:

- Determine the set of points.
- Make a list of all possible base blocks.
- Solve the problem of huge number of constructed designs with the same parameters (isomorphic or not?).

We had to add some extra eliminations.

Parameters of block designs	# non-isomorphic	Full automorphism group
2-(28, 3, 2)	1	$U(3, 3) : Z_2$
2-(28, 3, 8)	1	$U(3, 3) : Z_2$
2-(28, 3, 16)	1	S(6, 2)
2-(28, 4, 1)	1	$U(3, 3) : Z_2$
2-(28, 4, 4)	1	$U(3, 3) : Z_2$
2-(28, 4, 32)	1	$U(3, 3) : Z_2$
2-(28, 4, 48)	2	$U(3, 3) : Z_2$
2-(28, 4, 96)	2	$U(3, 3) : Z_2$
2-(28, 5, 40)	1	$U(3,3): Z_2$
2-(28, 5, 80)	4	$U(3, 3) : Z_2$
	1	U(3, 3)
2-(28, 5, 160)	2	U(3, 3)
	8	$U(3,3): Z_2$
	1	S(6, 2)
2-(28, 6, 20)	1	$U(3, 3) : Z_2$
2-(28, 6, 30)	1	$U(3, 3) : Z_2$
2-(28, 6, 40)	2	$U(3, 3) : Z_2$
	1	S(6, 2)
2-(28, 6, 60)	3	$U(3,3): Z_2$
2-(28, 6, 80)	1	U(3, 3)
	1	$U(3,3): Z_2$
	1	S(6, 2)
2-(28, 6, 120)	2	U(3,3)
	3	$U(3,3): Z_2$
2-(28, 6, 240)	20	U(3,3)
	16	$U(3,3): Z_2$

Parameters of block designs	# non-isomorphic	Full automorphism group
2-(28, 7, 16)	1	S(6, 2)
2-(28, 7, 48)	1	$U(3, 3) : Z_2$
2-(28, 7, 56)	3	$U(3, 3) : Z_2$
2-(28, 7, 84)	1	$U(3, 3) : Z_2$
2-(28, 7, 112)	2	$U(3, 3) : Z_2$
	1	U(3, 3)
2-(28, 7, 168)	5	$U(3,3): Z_2$
	8	U(3,3)
2-(28, 7, 336)	37	$U(3,3): Z_2$
	73	U(3,3)
2-(28, 8, 14)	1	$U(3, 3) : Z_2$
2-(28, 8, 56)	3	$U(3,3): Z_2$
2-(28, 8, 112)	2	$U(3,3): Z_2$
2-(28, 8, 224)	12	$U(3, 3) : Z_2$
	11	U(3, 3)
2-(28, 8, 448)	217	U(3,3)
	61	$U(3,3): Z_2$
	1	S(6, 2)
2-(28, 9, 32)	1	$U(3, 3) : Z_2$
2-(28, 9, 72)	1	$U(3, 3) : Z_2$
	1	U(3,3)
2-(28, 9, 96)	1	$U(3,3): Z_2$
	1	U(3,3)
2-(28, 9, 144)	1	$U(3,3): Z_2$

Parameters of block designs	# non-isomorphic	Full automorphism group
2-(28, 9, 192)	5	$U(3, 3) : Z_2$
	4	U(3, 3)
2-(28, 9, 288)	11	$U(3, 3) : Z_2$
	22	U(3, 3)
2-(28, 9, 576)	103	$U(3,3): Z_2$
	503	U(3, 3)
2-(28, 10, 40)	1	S(6, 2)
2-(28, 10, 45)	1	S(6, 2)
2-(28, 10, 60)	1	$U(3, 3) : Z_2$
2-(28, 10, 90)	3	$U(3, 3) : Z_2$
2-(28, 10, 120)	1	$U(3, 3) : Z_2$
	1	U(3, 3)
2-(28, 10, 180)	3	$U(3, 3) : Z_2$
	3	U(3, 3)
2-(28, 10, 240)	4	$U(3,3): Z_2$
	4	U(3, 3)
2-(28, 10, 360)	21	$U(3,3): Z_2$
	24	U(3, 3)
2-(28, 10, 720)	136	$U(3, 3) : Z_2$
	996	U(3, 3)

Parameters of block designs	# non-isomorphic	Full automorphism group
2-(28, 11, 110)	1	S(6, 2)
	1	U(3, 3)
2-(28, 11, 220)	1	$U(3,3): Z_2$
2-(28, 11, 440)	18	$U(3,3): Z_2$
	44	U(3, 3)
2-(28, 11, 880)	1650	U(3, 3)
	195	$U(3,3): Z_2$
	2	<i>S</i> (6, 2)
2-(28, 12, 11)	1	S(6, 2)
2-(28, 12, 44)	1	$U(3, 3) : Z_2$
2-(28, 12, 88)	1	$U(3, 3) : Z_2$
2-(28, 12, 132)	4	$U(3, 3) : Z_2$
2-(28, 12, 176)	1	$U(3, 3) : Z_2$
	1	U(3, 3)
2-(28, 12, 264)	3	$U(3, 3) : Z_2$
	1	U(3, 3)
2-(28, 12, 352)	8	$U(3,3): Z_2$
	6	U(3, 3)
2-(28, 12, 528)	24	$U(3, 3) : Z_2$
	46	U(3, 3)
2-(28, 12, 1056)	218	$U(3, 3) : Z_2$
	2372	U(3, 3)
	1	S(6, 2)

Parameters of block designs	# non-isomorphic	Full automorphism group
2-(28, 13, 104)	1	$U(3,3): Z_2$
2-(28, 13, 208)	2	$U(3, 3) : Z_2$
	1	U(3, 3)
	1	S(6, 2)
2-(28, 13, 312)	1	$U(3, 3) : Z_2$
	1	U(3, 3)
2-(28, 13, 416)	7	$U(3,3): Z_2$
	6	U(3, 3)
	1	S(6, 2)
2-(28, 13, 624)	19	$U(3,3): Z_2$
	59	U(3, 3)
2-(28, 13, 1248)	260	$U(3,3): Z_2$
	2887	U(3, 3)
2-(28, 14, 182)	1	U(3, 3)
2-(28, 14, 208)	2	$U(3, 3) : Z_2$
2-(28, 14, 364)	14	$U(3, 3) : Z_2$
2-(28, 14, 728)	28	$U(3, 3) : Z_2$
	53	U(3, 3)
2-(28, 14, 1456)	246	$U(3, 3) : Z_2$
	3016	U(3, 3)

Table: 3-designs constructed from the group U(3,3)

Parameters of designs	# non-isomorphic	Full automorphism group
3-(28, 13, 528)	40	U(3,3)
3-(28, 14, 84)	1	U(3,3)
3-(28, 14, 168)	2	$U(3,3): Z_2$
3-(28, 14, 336)	7	U(3,3)
3-(28, 14, 672)	12	$U(3,3): Z_2$
	136	U(3,3)

A t- (v, k, λ) design \mathcal{D} is quasi-symmetric with intersection numbers x and y (x < y), if any two blocks of \mathcal{D} intersect in either x or y points.

Table: Quasi-symmetric designs constructed from the group U(3,3)

Parameters of designs	Full automorphism group
2-(28, 4, 1)	$U(3,3): Z_2$
2-(28, 12, 11)	<i>S</i> (6,2)

Thank you for your attention!