On self-dual MRD codes

Wolfgang Willems

DARNEC'15, Istanbul, Nov. 4-6, 2015

set up:

• $C \leq k^{m \times n}$, linear of dimension ℓ , $k = \mathbb{F}_q$. $(m \geq n)$

•
$$d(A,B) = \operatorname{rank} (A-B)$$
 for $A, B \in k^{m \times n}$

•
$$\langle A, B \rangle = \operatorname{trace}(AB^t).$$

- If $C = C^{\perp}$, then C is called self-dual.
- C is called MRD if $d(C) = d = n \frac{\ell}{m} + 1$.
- If C is a self-dual MRD code, then $\ell = \frac{mn}{2}$ and $d = \frac{n}{2} + 1 \ge 2$.

Problem.

What can we say about self-dual MRD codes?

- Do they exist?
- If so, are they of interest?

Joint work with G. Nebe, RWTH Aachen, Germany.

Disappointing: They do not exist in characteristic 2.

Theorem 1.

Assume that char k = 2 and $C \subseteq C^{\perp} \leq k^{m \times n}$. Then the all-ones matrix J is in C^{\perp} . In particular, $d(C^{\perp}) = 1$.

Proof:

•
$$A = (a_{ij}) \in \mathcal{C}.$$

• $0 = \langle A, A \rangle = \sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij}^2 = (\sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij})^2 = \langle A, J \rangle^2.$

•
$$d(\mathcal{C}^{\perp}) \leq d(J,0) = \operatorname{rank} J = 1.$$

Example.

Let
$$\mathcal{C} \leq \mathbb{F}_q^{2 \times 2}$$
 be an MRD code of dimension 2. Then $\mathcal{C} = \langle A, B \rangle$ with $A = \begin{pmatrix} 1 & 0 \\ a & b \end{pmatrix}$ and $B = \begin{pmatrix} 0 & 1 \\ c & d \end{pmatrix}$.

Lemma 1. C is a self-dual MRD code if and only if the following holds true:

(i)
$$-1 \notin \mathbb{F}_q^2$$
, i.e. $q \equiv 3 \mod 4$ and
(ii) $a^2 + b^2 = -1$ and $(c, d) \in \{(-b, a), (b, -a)\}.$

Remark. All codes in Lemma 1 are pairwise equivalent and equivalent to Gabidulin codes of full length.

Theorem 2. (Hua, Wan; ~ '50, '60) If φ is a linear isometry of $k^{m \times n}$ $(m, n \ge 2)$ w.r.t. $d(\cdot, \cdot)$, then there exist $X \in GL(m, k)$ and $Y \in GL(n, k)$ s.t.

 $\varphi(A) = \kappa_{X,Y}(A) = XAY$ for all $A \in k^{m \times n}$ (proper isometry)

or, but only in case m = n,

$$\varphi(A) = \tau_{X,Y} = XA^tY$$
 for all $A \in k^{n \times n}$

Remark.

If φ also preserves $\langle \cdot, \cdot \rangle$, then $XX^t = aI_m$ and $YY^t = a^{-1}I_n$.

Proposition.

 $C \leq k^{m \times n}$ with char $k \neq 2$ is properly equivalent to a selfdual code if and only if the following holds:

(i)
$$X = X^t \in GL(m,k), Y = Y^t \in GL(n,k)$$

(ii) det
$$X$$
, det $Y \in (k^{\times})^2$

(iii)
$$\mathcal{C}^{\perp} = X\mathcal{C}Y.$$

Proof. Suppose that $X_0 C Y_0 = D = D^{\perp}$.

 $0 = \operatorname{trace} (X_0 C_1 Y_0 (X_0 C_2 Y_0)^t) = \operatorname{trace} (X_0 C_1 Y_0 Y_0^t C_2^t X_0^t) = \operatorname{trace} (X_0^t X_0 C_1 Y_0 Y_0^t C_2^t)$

Put $X := X_0^t X_0$ and $Y := Y_0 Y_0^t$. Then X and X are symmetric of square determinant and $\mathcal{C}^{\perp} = X \mathcal{C} Y$.

Conversely, (i) and (ii) imply $X = X_0^t X_0$ and $Y = Y_0 Y_0^t$ (due to the classification of regular quadratic forms).

Main Theorem.

Let $C = \mathcal{G}_{\frac{n}{2},\Gamma} \leq k^{n \times n}$ be a Gabidulin code of dimension $\frac{n^2}{2}$. Then C is equivalent to a self-dual Gabidulin code if and only if

$$n \equiv 2 \mod 4$$
 and $q \equiv 3 \mod 4$.

(compare the result with Lemma 1)

To prove the main theorem we mainly need

Theorem 3. For $0 < \ell < n$ and $k = \mathbb{F}_q$ we have.

a) The group of proper automorphisms of $\mathcal{G}_{\ell,\Gamma} \leq k^{n \times n}$ is $\operatorname{Aut}^{(p)}(\mathcal{G}_{\ell,\Gamma}) = \{\kappa_{X,Y} \mid (X,Y) \in (A^{j}\mathcal{G}_{1,\Gamma}^{\times} \times A^{-j}\mathcal{G}_{1,\Gamma}^{\times}), \\ 0 \leq j \leq n-1\}$

b) Aut(
$$\mathcal{G}_{\ell,\Gamma}$$
) = $\langle \operatorname{Aut}^{(p)}(\mathcal{G}_{\ell,\Gamma}), \tau_{T^{-1},TA^{\ell-1}} \rangle$

c)
$$|\operatorname{Aut}(\mathcal{G}_{\ell,\Gamma})| = 2n(q^n-1)rac{q^n-1}{q-1}.$$

(Note: $\mathcal{G}_{1,\Gamma}^{\times} = \langle S \rangle$, Singer cycle, det $S \notin (k^{\times})^2$)

Lemma 4.

$$\mathcal{G}_{\frac{n}{2},\Gamma}^{\perp} = TA^{n/2}\mathcal{G}_{\frac{n}{2},\Gamma}T^{-1}$$

, where

•
$$\Gamma = (\gamma, \gamma^{q}, \dots, \gamma^{q^{n-1}})$$

•
$$T = (t_{ij}) \text{ where } t_{ij} = \text{trace }_{\mathbb{F}_{q^n}/\mathbb{F}_{q}}(\gamma^{q^{i+j}})$$

•
$$A = \begin{pmatrix} 0 & \dots & 0 & 1 \\ 1 & 0 & \dots & 0 \\ 0 & \dots & \ddots & \vdots \\ 0 & \dots & 1 & 0 \end{pmatrix}.$$

(Essentially in Berger '02 and Ravagnani '15)

Proof of the main theorem.

- Suppose that $C = \mathcal{G}_{\frac{n}{2},\Gamma}$ is equiv. to a self-dual one.
- (1) C is properly equiv. to a self-dual code:

•
$$C \mapsto XC^t Y \in \mathcal{D} = \mathcal{D}^{\perp}$$
.

•
$$Y^t C X^t \in \mathcal{D}^t = (\mathcal{D}^t)^{\perp}$$
.

(2)
$$\mathcal{C}^{\perp} = TA^{n/2}\mathcal{C}T^{-1}$$
 (by Lemma 4)

(3) $C^{\perp} = XCY$ with X, Y sym. and det X, det $Y \in (k^{\times})^2$ (by Proposition).

(4)
$$(A^{-n/2}T^{-1}X, YT) = (A^jS^i, A^{-j}S^h) \in Aut(\mathcal{C})$$

(by Theorem 3)

(5) What are the conditions that there exist triples (i, j, h) such that

$$X_{i,j} = TA^{n/2+j}S^i$$
 and $Y_{h,j} = A^{-j}S^hT^{-1}$

are symmetric and have a square determinant.

... is equivalent to
$$n \equiv 2 \mod 4$$
 and $q \equiv 3 \mod 4$.

Final remarks.

- If $q \equiv 1 \mod 4$ or $4 \mid n$ we do not know any example of a self-dual MRD code in $\mathbb{F}_q^{n \times n}$.
- Is there a self-dual MRD code in $\mathbb{F}_3^{4\times 4}$?
- (Morrison) In $\mathbb{F}_5^{4\times 2}$ there are 5 equivalence classes of selfdual MRD codes.
- Are there interesting automorphism groups in the class of self-dual MRD codes? Aut $(\mathcal{G}_{\ell,\Gamma}) = ((C_{q^n-1}Y_{q-1}C_{q^n-1}) \rtimes C_n) \rtimes \langle t \rangle, \quad (t \neq 1 = t^2)$