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set up:

• C ≤ km×n, linear of dimension ℓ, k = Fq. (m ≥ n)

• d(A,B) = rank (A−B) for A,B ∈ km×n.

• 〈A,B〉 = trace (ABt).

• If C = C⊥, then C is called self-dual.

• C is called MRD if d(C) = d = n− ℓ
m +1.

• If C is a self-dual MRD code, then ℓ = mn
2 and

d = n
2 +1 ≥ 2.
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Problem.

What can we say about self-dual MRD codes?

• Do they exist?

• If so, are they of interest?

Joint work with G. Nebe, RWTH Aachen, Germany.
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Disappointing: They do not exist in characteristic 2.

Theorem 1.

Assume that char k = 2 and C ⊆ C⊥ ≤ km×n. Then the

all-ones matrix J is in C⊥. In particular, d(C⊥) = 1.

Proof:

• A = (aij) ∈ C.

• 0 = 〈A,A〉 =
∑m

i=1

∑n
j=1 a

2
ij = (

∑m
i=1

∑n
j=1 aij)

2 = 〈A, J〉2.

• d(C⊥) ≤ d(J,0) = rank J = 1.
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Example.

Let C ≤ F
2×2
q be an MRD code of dimension 2. Then

C = 〈A,B〉 with A =

(

1 0
a b

)

and B =

(

0 1
c d

)

.

Lemma 1. C is a self-dual MRD code if and only if the

following holds true:

(i) −1 6∈ F
2
q , i.e. q ≡ 3 mod 4 and

(ii) a2 + b2 = −1 and (c, d) ∈ {(−b, a), (b,−a)}.

Remark. All codes in Lemma 1 are pairwise equivalent and

equivalent to Gabidulin codes of full length.
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Theorem 2. (Hua, Wan; ∼ ’50, ’60)

If ϕ is a linear isometry of km×n (m,n ≥ 2) w.r.t. d(· , ·),

then there exist X ∈ GL(m, k) and Y ∈ GL(n, k) s.t.

ϕ(A) = κX,Y (A) = XAY for all A ∈ km×n (proper isometry)

or, but only in case m = n,

ϕ(A) = τX,Y = XAtY for all A ∈ kn×n

Remark.

If ϕ also preserves 〈· , ·〉, then XXt = aIm and Y Y t = a−1In.
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Proposition.

C ≤ km×n with char k 6= 2 is properly equivalent to a self-

dual code if and only if the following holds:

(i) X = Xt ∈ GL(m, k), Y = Y t ∈ GL(n, k)

(ii) detX, detY ∈ (k×)2

(iii) C⊥ = XCY .
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Proof. Suppose that X0CY0 = D = D⊥.

0 = trace (X0C1Y0(X0C2Y0)
t) = trace (X0C1Y0Y

t
0C

t
2X

t
0) =

trace (Xt
0X0C1Y0Y

t
0C

t
2)

Put X := Xt
0X0 and Y := Y0Y

t
0. Then X and X are sym-

metric of square determinant and C⊥ = XCY .

Conversely, (i) and (ii) imply X = Xt
0X0 and Y = Y0Y

t
0

(due to the classification of regular quadratic forms).

7



Main Theorem.

Let C = Gn
2,Γ

≤ kn×n be a Gabidulin code of dimension n2

2 .

Then C is equivalent to a self-dual Gabidulin code if and

only if

n ≡ 2 mod 4 and q ≡ 3 mod 4.

(compare the result with Lemma 1)

8



To prove the main theorem we mainly need

Theorem 3. For 0 < ℓ < n and k = Fq we have.

a) The group of proper automorphisms of Gℓ,Γ ≤ kn×n is

Aut(p)(Gℓ,Γ) = {κX,Y | (X, Y ) ∈ (AjG×
1,Γ × A−jG×

1,Γ),

0 ≤ j ≤ n− 1}

b) Aut(Gℓ,Γ) = 〈Aut(p)(Gℓ,Γ), τT−1,TAℓ−1〉

c) |Aut(Gℓ,Γ)| = 2n(qn − 1)q
n−1
q−1 .

(Note: G×
1,Γ = 〈S〉, Singer cycle, detS 6∈ (k×)2)
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Lemma 4.

G⊥
n
2,Γ

= TAn/2Gn
2,Γ

T−1

, where

• Γ = (γ, γq, . . . , γq
n−1

)

• T = (tij) where tij = trace Fqn/Fq
(γq

i+j
)

• A =











0 . . . 0 1
1 0 . . . 0
0 .. . . . . ...
0 . . . 1 0











.

(Essentially in Berger ’02 and Ravagnani ’15)
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Proof of the main theorem.

• Suppose that C = Gn
2,Γ

is equiv. to a self-dual one.

(1) C is properly equiv. to a self-dual code:

• C 7→ XCtY ∈ D = D⊥.

• Y tCXt ∈ Dt = (Dt)⊥.

(2) C⊥ = TAn/2CT−1 (by Lemma 4)

(3) C⊥ = XCY with X,Y sym. and detX,detY ∈ (k×)2

(by Proposition).
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(4) (A−n/2T−1X, Y T) = (AjSi, A−jSh) ∈ Aut(C)

(by Theorem 3)

(5) What are the conditions that there exist triples (i, j, h)

such that

Xi,j = TAn/2+jSi and Yh,j = A−jShT−1

are symmetric and have a square determinant.

... is equivalent to n ≡ 2 mod 4 and q ≡ 3 mod 4.
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Final remarks.

• If q ≡ 1 mod 4 or 4 | n we do not know any example of

a self-dual MRD code in F
n×n
q .

• Is there a self-dual MRD code in F
4×4
3 ?

• (Morrison) In F
4×2
5 there are 5 equivalence classes of self-

dual MRD codes.

• Are there interesting automorphism groups in the class of

self-dual MRD codes?

Aut(Gℓ,Γ) = ((Cqn−1Yq−1Cqn−1) ⋊ Cn) ⋊ 〈t〉, (t 6= 1 = t2)
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