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Multipath Fading
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It turns out that this can be made equivalent to…
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It turns out that this can be made equivalent to…

How?

Signal processing in the upcoming wireless networks
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Beyond Shannon’s capacity

• Multipath can be beneficial by opening simultaneous channels.

• Multiple-input multiple-output (MIMO) was born.

• After 15 years of academic research  standards:

802.11n and 4G (LTE-A, WiMax).

1993 - 1998:

• Paulraj et al. research on MIMO (Stanford, CA).

• Gerard Foschini deduced the theoretical capacity for MIMO 

and proved it experimentally (@ Bell Labs, NJ).

Gerard Foschini

(Bell Labs, NJ)

Signal processing in the upcoming wireless networks



14 14/93

Multiple-input multiple-output (MIMO) detection
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MIMO channel is a linear transformation

Example: 3 dimensions (3 antennas using PAM).
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Virtual MIMO (non co-located antennas)

Base
Station

Signal processing in the upcoming wireless networks
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Orthogonal frequency division multiplexing MIMO
(OFDM-MIMO)

Signal processing in the upcoming wireless networks
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MIMO Equalisation for
ISI channels

Multi-user 
Communication

Inversion
(linear)

 Zero-forcing (ZF)
 Channel inversion
 Decorrelation

Zero-forcing (ZF) equalisation Decorrelating

Minimum 
mean squared 
error (MMSE)

MMSE MMSE filtering MMSE detection

Interference
cancellation

 Nulling and cancelling
 Successive interference cancellation (SIC)
 V-BLAST detection

Decision feedback equalisation 
(DFE)

 Iterative multi-user
detection MUD)

 Successive interference
cancellation (SIC)

Optimum
detection

 Maximum likelihood detection (MLD)
 Exhaustive search

Maximum likelihood sequence
detection (MLSD)

 ML detection
 Brute force
 Sphere decoding
(near optimum)

Precoding  Multiuser-MIMO
 Broadcast channel (BC)

 ISI Precoding
 Costas precoding
 Tomlinson-Harashima
precoding (THP)

Dirty paper coding (DPC)

Parallel
subchannels

 Closed loop SU-MIMO
 Singular value decomposition (SVD) and water filling
 Communication over eigen- modes
 Eigen-beam spatial division multiplexing
 Precoding
 Beamforming

 OFDM
 Multi-tone modulation
 Filter bank multicarrier

Not defined

“A rose by any other name would smell as sweet”

Signal processing in the upcoming wireless networks
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Massive MIMO

F. Rusek, D. Persson, B. K. Lau, E. G. Larsson, T. L. Marzetta, O. Edfors, and F. 
Tufvesson, “Scaling up MIMO: Opportunities and Challenges with Very Large Arrays”,
IEEE Signal Procesessing Magazine, January, 2013.

Signal processing in the upcoming wireless networks
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Efficient Linear Processing (for tall H matrices)

Signal processing in the upcoming wireless networks

- Zero-forcing (or MMSE):

- Near optimal diversity:  

- Low complexity

- But requires inverse (             )

- It is possible to use:
Neumann series (approximation)
Matrix inversion lemma
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Massive MIMO: antenna arrays

Signal processing in the upcoming wireless networks
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Massive MIMO: antenna arrays

Signal processing in the upcoming wireless networks

(Images: from Lund Univ., EU METIS and ARGOS projects)
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Neumann series (approximation)

Signal processing in the upcoming wireless networks

The Neumann series provides an 
efficient, hardware-realisable, 
method to compute the inverse 
required to perform linear 
processing.
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Large (symmetric) MIMO

Signal processing in the upcoming wireless networks
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Recent state-of-the-art in radio science

Space-time wireless communications: modern signal processing with MIMO

“It is generally not possible for radios to receive and transmit
on the same frequency band because of the interference that results.”

Andrea Goldsmith,

In Wireless Communications, Cambridge University Press, p. 454, 2003
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Two possible antenna setups
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MIMO full-duplex device

Signal processing in the upcoming wireless networks
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Multiple-input multiple-output   (i.e., multi-antenna)

Signal processing in the upcoming wireless networks
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In-band full-duplex relay station

Signal processing in the upcoming wireless networks
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Filter design: receive filters and transmit filters

Signal processing in the upcoming wireless networks
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Feedback filter for interference cancellation

Signal processing in the upcoming wireless networks
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How loopback interference impacts on SINR

Signal processing in the upcoming wireless networks
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Protection to self interference gain

Signal processing in the upcoming wireless networks
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Multi-pairs using virtual MIMO

Signal processing in the upcoming wireless networks

Decode-and-Forward 

Full-Duplex

Relay

Loopback 

Interference
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Multi-pairs with a full-duplex relay (1)
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Multi-pairs with a full-duplex relay (2)
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Multi-pairs with a full-duplex relay:
loop interference gain
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Multi-pairs with a full-duplex relay:
effect of the relay power on the performance
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Multi-pairs with a full-duplex relay:
effect of the relay power on the rates
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Two way relay channel

Two way relay channel
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TDMA

Two way relay channel
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Two way relay channel

Network Coding

Signal processing in the upcoming wireless networks
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Physical layer

Two way relay channel

Network Coding

Signal processing in the upcoming wireless networks

Two time-slots. Can we do better?

 Merge both stages  in-band full-duplex.
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Multi-way channels. The Y-network with TDMA:

Signal processing in the upcoming wireless networks

Six time-slots.

Can we do better?
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Three time slots: a protocol with SISO (1)

𝑦1 2 = ℎ11𝑥1 + ℎ12𝑥2 + 𝑛

𝑦2 2 = ℎ21𝑥1 + ℎ22𝑥2 + 𝑛

𝑦3 2 = ℎ31𝑥1 + ℎ32𝑥2 + 𝑛

Signal processing in the upcoming wireless networks
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Three time slots: a protocol with SISO (1)

𝑦1 2 = ℎ11𝑥1 + ℎ12𝑥2 + 𝑛

𝑦2 2 = ℎ21𝑥1 + ℎ22𝑥2 + 𝑛

𝑦3 2 = ℎ31𝑥1 + ℎ32𝑥2 + 𝑛

 𝑥2

 𝑥1

𝑦3 2
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Three time slots: a protocol with SISO (2)

 𝑥2

 𝑥1

𝑦3 2

y1 3 = ℎ11x1 + ℎ13x3 + n

y2 3 = ℎ21x1 + ℎ23x3 + n

y3 3 = ℎ31x1 + ℎ33x3 + n

Signal processing in the upcoming wireless networks



55 55/93

Three time slots: a protocol with SISO (2)

 𝑥2

 𝑥1

𝑦3 2

y1 3 = ℎ11x1 + ℎ13x3 + n

y2 3 = ℎ21x1 + ℎ23x3 + n

y3 3 = ℎ31x1 + ℎ33x3 + n

Signal processing in the upcoming wireless networks



56 56/93

Three time slots: a protocol with SISO (2)

 𝑥2

 𝑥1

𝑦3 2

y1 3 = ℎ11x1 + ℎ13x3 + n

y2 3 = ℎ21x1 + ℎ23x3 + n

y3 3 = ℎ31x1 + ℎ33x3 + n

 x3

 x3

 𝑥1
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Three time slots: a protocol with SISO (2)
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 x3

 x3
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Three time slots: a protocol with SISO (2)

 𝑥2

 𝑥1

y1 3 = ℎ11x1 + ℎ13x3 + n

y2 3 = ℎ21x1 + ℎ23x3 + n

y3 3 = ℎ31x1 + ℎ33x3 + n

 x3

 x3

 𝑥1

𝑦3 2 = ℎ31𝑥1 + ℎ32𝑥2 + 𝑛

 𝑥2
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Two time slots: a protocol with SISO terminals

• Terminals have CSIR

y1 = ℎ11x1 + ℎ12x2 + ℎ13𝑥3 + 𝑛

𝑦2 = ℎ21x1 + ℎ22x2 + h23x3 + 𝑛

𝑦3 = ℎ31𝑥1 + ℎ32𝑥2 + ℎ33𝑥3 + 𝑛

Signal processing in the upcoming wireless networks
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Two time slots: a protocol with SISO terminals

y1 = ℎ11x1 + ℎ12x2 + ℎ13𝑥3 + 𝑛

𝑦2 = ℎ21x1 + ℎ22x2 + h23x3 + 𝑛

𝑦3 = ℎ31𝑥1 + ℎ32𝑥2 + ℎ33𝑥3 + 𝑛

• Each terminal cancels its own message

Signal processing in the upcoming wireless networks
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Two time slots: a protocol with SISO terminals

• Joint detection (ML) to detect the last two messages

𝑦1
′ = y1 − ℎ11𝑥1

y2
′ = 𝑦2 − ℎ22𝑥2

𝑦3
′ = 𝑦3 − ℎ33𝑥3

Signal processing in the upcoming wireless networks



62 62/93

Two time slots: a protocol with MIMO terminals

Signal processing in the upcoming wireless networks

Each terminal cancels its own message and the 
remaining two are MIMO detected.

𝑦11 = ℎ11𝑥1 + ℎ21𝑥2 + ℎ31𝑥3 + 𝑛

𝑦12 = ℎ12𝑥1 + ℎ22𝑥2 + h32𝑥3 + 𝑛

Two time-slots only: Can we do better?
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Two time slots: a protocol with MIMO terminals
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Each terminal cancels its own message and the 
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Two time slots: a protocol with MIMO terminals

Signal processing in the upcoming wireless networks

Each terminal cancels its own message and the 
remaining two are MIMO detected.

𝑦11 = ℎ11𝑥1 + ℎ21𝑥2 + ℎ31𝑥3 + 𝑛

𝑦12 = ℎ12𝑥1 + ℎ22𝑥2 + h32𝑥3 + 𝑛

𝑦′
11

𝑦′
12

=
ℎ21 ℎ31

ℎ22 ℎ32

𝑥2

𝑥3
+ [𝐧]

• A 2x2 MIMO detection problem:

Two time-slots only: Can we do better?
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Full-duplex in the Y-channel: how it can work

Signal processing in the upcoming wireless networks

Uplink Downlink

One time slot only on average as the number of 
messages exchanges increases!
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Full-duplex in the Y-channel: Performance

Signal processing in the upcoming wireless networks

4-PSK 16-PSK
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Full-duplex with a massive MIMO relay and PLNC
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Self-interference model
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Denoise and forward with QPSK in the TWRC

Signal processing in the upcoming wireless networks

QPSK modulation uses:

Decision at the relay:

Decisions at the terminals:
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Two mappings: GF(2) and GF(4)
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Two mappings: GF(2) and GF(4)
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Bit error probability
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Bit error probability
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Nested lattice coding

Signal processing in the upcoming wireless networks

Nested lattice code:

Quantiser:

Lattice:

Isomorphism:
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Lattice-based physical layer NC
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Gaussian lattice

Signal processing in the upcoming wireless networks
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Relay reception

Signal processing in the upcoming wireless networks

Relay (receiver):



80 80/93

Terminal’s reception
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TWRC with lattice-based PLNC

Signal processing in the upcoming wireless networks

MMSE scale factor:
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TWRC with lattice-based PLNC

Signal processing in the upcoming wireless networks

From an engineering perspective the scheme has a very poor performance.

How to improve it?
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Equivalent noise is composed of:

Signal processing in the upcoming wireless networks

Cross-terms interference:

Noise term:

Self-interference:

But, given the massive MIMO effect:
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Taking advantage of massive MIMO

Signal processing in the upcoming wireless networks
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Taking advantage of massive MIMO
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Reception at both terminals
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Reception at the relay and at both terminals

Signal processing in the upcoming wireless networks
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Results: massive MIMO + full-duplex + PLNC
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Effect of channel estimation errors

Signal processing in the upcoming wireless networks

Channel state information accuracy is crucial !
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How to offer more?
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Physical layer network coding
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How to offer more?
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Physical layer network coding
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Main References on Massive MIMO

21/07/2015 Signal processing in the upcoming wireless networks
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Main references on MIMO lattices
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“Lattice are everywhere*”

Current growing/hot topics:

• Physical Layer Network Coding
[Gastpar, Nazer, Proc. of the IEEE, 2011];

•Lattice-based cryptography for physical layer 
security.

•R. Zamir,  ``Lattices are Everywhere'', talk at the Information Theory and Applications Workshop 
(ITA09), University of California at San Diego, February 2009.

- U. Erez, S. Litsyn and R. Zamir,  "Lattices which are good for (almost) everything“,  IEEE 
Transactions on Information Theory, pp. 3401-3416 Oct. 2005.

Signal processing in the upcoming wireless networks
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Lattices in Cryptography

2002 2009 2009

Signal processing in the upcoming wireless networks
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Imaginary (dim 2)

Real (dim 1)

q

A

Radio waves as symbols

[Picture from the Institute of Sound and Vibration, 
University of Southampton, UK]

Receiver

Signal processing in the upcoming wireless networks
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2D orthogonal lattices in SISO
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20 dB
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CVP in lattices in 8 dimensions (or more)

Closest vector problem (CVP) in a lattice

(NP-hard problem)
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Equivalent basis: reduced and not reduced

• Almost orthogonal vectors
• Short vectors

eq  H = Q H M

h1

h1

h2

0

h2

Dimension 1
D
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 2
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LLL reduction
• Reduction in polynomial time Lenstra,Lentra,Lovász (1982)
• The Gauss algorithm (1801) is LLL in 2D

0
Dimension 1

D
im

en
si

on
 2

Start

1st step:  replace  h2 by  h2h1  which gives us  h2
2st step:  replace  h1 by  h1h2  which gives us  h1

2nd step

h2

h2

h1

h1

1st step

Arjen Klaas
Lenstra

László Lovász Hendrik Willem 
Lenstra
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NP Hard Problems: the worst

P

NP

NP-Complete

NP-hard

Signal processing in the upcoming wireless networks



106 106/93

Linear receivers

Zero Forcing (ZF)

Minimum Mean Squared Error (MMSE)

Slicing x̂y  1
ZFW H
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(or pseudo-inverse H H
H H H H

y = Hx + n

1slice( )x̂ = H y
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The geometry of zero-forcing

Space-time wireless communications: modern signal processing with MIMO

Signal processing in the upcoming wireless networks
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The geometry of successive interference cancelation
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V-BLAST - vertical Bell Labs space-time [1999]
or… SIC: successive interference cancelation
or… Babai’s algorithm or the nearest plane algorithm [1986]

span( )jH

span( )jH

jh

jh

1st: select this 

hyperplane
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Vectors in the Dual Lattice define hyperplanes (1/2)

 
(a) Select ion of (–2,1) in the dual lat t ice.  
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Vectors in the Dual Lattice define hyperplanes (2/2)

 
(b) Select ion of (–1,4) in the dual lat t ice. 
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[Figure by Dr. Wai Ho Mow, 
Univ. of hong Kong]
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Sphere decoding or… tree decoding
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The notion of coverage (1/2)

[Figure by Dr. Karen Su, University of Cambridge ]
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The notion of coverage (2/2)

Improves coverage of Voronoi cell by increasing the inradius of the decision 

region

(Figure co-authored with Dr. Karen Su, University of Cambridge )
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The notion of coverage (2/2)

Improves coverage of Voronoi cell by increasing the inradius of the decision 

region

(Figure co-authored with Dr. Karen Su, University of Cambridge )
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The notion of coverage (2/2)

Improves coverage of Voronoi cell by increasing the inradius of the decision 

region

Zero-forcing

(Figure co-authored with Dr. Karen Su, University of Cambridge )
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The notion of coverage (2/2)

Improves coverage of Voronoi cell by increasing the inradius of the decision 

region

Zero-forcing

(Figure co-authored with Dr. Karen Su, University of Cambridge )

SIC
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The notion of coverage (2/2)

Improves coverage of Voronoi cell by increasing the inradius of the decision 

region

Zero-forcing

(Figure co-authored with Dr. Karen Su, University of Cambridge )

SIC
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The notion of coverage (2/2)

Improves coverage of Voronoi cell by increasing the inradius of the decision 

region

ZF with Lattice Reduction

Zero-forcing

(Figure co-authored with Dr. Karen Su, University of Cambridge )

SIC
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Two approaches for MIMO

Space-Time Coding

• Increase diversity (slope of the BER curves).

Spatial-multiplexing

• Increase spectral efficiency. Preferable to aim 

at SM [Lozano & Jindal 2010]
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MIMO detection brings together…

•Information Theory

•Coding Theory

•Detection and Estimation Theory

•Statistical signal processing

•Algorithms

•Optimization

•Pattern Recognition

•Machine Learning

•Cryptography

Applied 

Mathematics

Engineering

Theoretical 

Computer 

Science

Physics
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Most used techniques

• Zero Forcing (ZF)

• Minimum Mean Squared Error (MMSE) 

• V-BLAST (OSIC with ZF criterion)

• V-BLAST (OSIC with MMSE criterion)

• Lattice Reduction Aided (with ZF criterion)

• Lattice Reduction Aided (with MMSE criterion)

• Sphere decoder (with different enumerations)

• Maximum Likelihood (ML)
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Performance

10 15 20 25 30 35 40 45
10

-5

10
-4

10
-3

10
-2

10
-1

10
0

SNR [dB]

S
E

R

2x2 64-QAM

 

 

ZF.

MMSE

OSIC-ZF

LLL-ZF

LLL-OSIC-ZF

Focusing (E[]=46)

ML (SD)

Signal processing in the upcoming wireless networks



128 128/93

Performance

10 15 20 25 30 35 40 45 50
10

-5

10
-4

10
-3

10
-2

10
-1

10
0

SNR [dB]

S
E

R

3x3 64-QAM

 

 

ZF.

MMSE

OSIC-ZF

LLL-ZF

LLL-OSIC-ZF

Focusing (E[]=106)

ML (SD)

Signal processing in the upcoming wireless networks



129 129/93

Performance

20 22 24 26 28 30 32 34 36 38 40
10

-5

10
-4

10
-3

10
-2

10
-1

10
0

SNR [dB]

S
E

R

4x4 64-QAM

 

 

ZF

MMSE

OSIC-ZF

LLL-ZF

LLL-OSIC-ZF

Focusing (E[]=38)

Focusing (E[]=506)

ML (SD)

Signal processing in the upcoming wireless networks



130 130/93

Performance

10 15 20 25 30 35 40 45
10

-5

10
-4

10
-3

10
-2

10
-1

10
0

SNR [dB]

S
E

R

2x2 64-QAM

 

 

ZF.

MMSE

OSIC-ZF

LLL-ZF

LLL-OSIC-ZF

Focusing (E[]=46)

ML (SD)

Signal processing in the upcoming wireless networks



131 131/93

Performance

10 15 20 25 30 35 40 45 50
10

-5

10
-4

10
-3

10
-2

10
-1

10
0

SNR [dB]

S
E

R

3x3 64-QAM

 

 

ZF.

MMSE

OSIC-ZF

LLL-ZF

LLL-OSIC-ZF

Focusing (E[]=106)

ML (SD)

Signal processing in the upcoming wireless networks



132 132/93

Performance

20 22 24 26 28 30 32 34 36 38 40
10

-5

10
-4

10
-3

10
-2

10
-1

10
0

SNR [dB]

S
E

R

4x4 64-QAM

 

 

ZF

MMSE

OSIC-ZF

LLL-ZF

LLL-OSIC-ZF

Focusing (E[]=38)

Focusing (E[]=506)

ML (SD)

Signal processing in the upcoming wireless networks



133 133/93

LTE-Advanced user Equipment categories

3GPP Release UE Category Downlink rate MIMO Layers Uplink rate
Release 8 Category 1 10.3 Mbit/s 1 5.2 Mbit/s
Release 8 Category 2 51.0 Mbit/s 2 25.5 Mbit/s
Release 8 Category 3 102.0 Mbit/s 2 51.0 Mbit/s
Release 8 Category 4 150.8 Mbit/s 2 51.0 Mbit/s
Release 8 Category 5 299.6 Mbit/s 4 75.4 Mbit/s
Release 10 Category 6 301.5 Mbit/s 2 or 4 51.0 Mbit/s
Release 10 Category 7 301.5 Mbit/s 2 or 4 102.0 Mbit/s
Release 10 Category 8 2998.6 Mbit/s 8 1497.8 Mbit/s
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State of the art in 2015

• LTE-Advanced: 30 b/s/Hz

• Using 8x8 (8 antennas on each side of the link).

• Efficient detection was still an open problem until 2013. 
[e.g., IEEE Comms Mag Feb. 2012]

•“ Randomised SIC”. MCMC: Gibbs sampling is a 
surprisingly near-optimal solution. Perhaps a revolution.
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• Using 8x8 (8 antennas on each side of the link).

• Efficient detection was still an open problem until 2013. 
[e.g., IEEE Comms Mag Feb. 2012]

•“ Randomised SIC”. MCMC: Gibbs sampling is a 
surprisingly near-optimal solution. Perhaps a revolution.

(In convencional symmetric MIMO)
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Under development

• Co-operative relay networks 
(Started with Laneman & Wornel, MIT 2003)
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Broadcast channel
Precoding

(or MU-MIMO in the LTE jargon)
is a dual concept to spatial multiplexing

• Is the reverse (dual) of Spatial Multiplexing

•Base station transmits to all and each terminal only sees 
its own signal

• Requires Channel knowledge at the transmitter (of 
course!)
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Includes an introduction to
MIMO detection techniques

(CRC Press - Taylor and Francis, June 2014)
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