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Distributed storage system (DSS)

* Failures are the norm
rather than the exception

* Redundancy for reliability
* Replication
* Erasure coding
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Coding for distributed storage system

Using an (n, k) MDS

code:

* Partition the original
data into k packets.

* Generate n packets.

Store each packetin a
different node.
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Coding for distributed storage system

Using an (n, k) MDS

code:

* Partition the original
data into k packets.

* Generate n packets.

Store each packetin a
different node.

data (n, k) MDS property:
collector reconstruct the stored
data from any k nodes

storage node n

The system can tolerate

any n — k node failures
2



Node repair

* If only one node fails,
how to rebuild the
redundancy?
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Node repair

storage node n

If only one node fails,
how to rebuild the
redundancy?

Naive method: to
reconstruct the whole
data from k nodes
Solution:

regenerating
codes[DimGodWaiRamO07]
for efficient single
node repairs
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Regenerating codes — the idea

* To reduce the repair bandwidth, during a node repair
— communicate with more nodes,
— but download only part of their stored data

Example: (4,2) MDS code

A+C ||
B+D

- Systematic nodes

- Parity nodes
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— but download only part of their stored data
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Regenerating codes — the idea

* To reduce the repair bandwidth, during a node repair
— communicate with more nodes,
— but download only part of their stored data

Example: (ﬁ,%,zo) MDS code

X
- B

A+C
B+D

B+C

Naive repair:
A+B+D

read from any k =2 nodes =>4 symbols
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Regenerating codes — the idea

* To reduce the repair bandwidth, during a node repair
— communicate with more nodes,
— but download only part of their stored data

Example: (ﬁ,%(,za) MDS code

A=(A+B+D)-(B+D)
B=(B+D)-D

5

ead 1 symbol from 3 nodes => 3 symbols

Naive repair:
read from any k =2 nodes =>4 symbols

4—



System model:(n, k)-DSS

Data Source

storage node n



Storage-repair bandwidth tradeoff

 [DimGodWaiRamO07] established a tradeoff between
storage a vs. repair bandwidth y = fd for an (n, k) - DSS

e 2 extreme points of the trade-off:

MSR (minimum storage) : (Xysr, Ymsr) = (M o )

k’ k(d—k+1)

2Md 2Md )

MBR (minimum bandwidth) : (@ygr, YuBr) = (de_k2+k, Shd—kZ Tk




Storage-repair bandwidth tradeoff

 [DimGodWaiRamO07] established a tradeoff between
storage a vs. repair bandwidth y = fd for an (n, k) - DSS

e 2 extreme points of the trade-off:

MSR (minimum storage) : (Xysr, Ymsr) = ( o )

kK’ k(d—k+1)
Ford = n — 1, yy5g is minimized:

(amsr Y™ " 1usr) = (5 %nso)

MBR (minimum bandwidth) : (@ygr, Ymer) = ( S o )

2kd—k2+kK 2kd-k2+k

Ford =n — 1, yypgpg is minimized:
ym M 2n-2 M 2n-2

(C( in )
MBR»Y MBR k 2n—-k—-1"k 2n—-k—1




Storage-repair bandwidth tradeoff

IDimGodWaiRamO07] established a tradeoff between
storage a vs. repair bandwidth y = fd for an (n, k) - DSS

e 2 extreme points of the trade-off:

Md \

.. ] (]
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Storage-repair bandwidth tradeoff

 [DimGodWaiRamO07] established a tradeoff between
storage a vs. repair bandwidth y = fd for an (n, k) - DSS

e 2 extreme points of the trade-off:

MSR (minimum storage) : (apgp, Vree-" - L. )

Ford =n— 1,y MDS array codes

mmMSR) — (% Mn—_l)

\MSR, ¥ ' K'n-k

MBR (minimum bandwidth) : (@ygr, Ymer) = ( S o )

2kd—k2+kK 2kd-k2+k

Ford =n — 1, yypgpg is minimized:
min — (M _2n-2 M 2n-2
(“MBR’V MBR) — (E 2n—k-1 k 2n—-k-1




EXAMPLE: HDFS RAID RS code vs. MSR/MBR

640 MB file => 10 blocks (14,10) —RS code

BEH B BN EOEEDEBEE
i A B

Data size M = 640 MB

Storage nodes n =14

DC connects to any k = 10 nodes
Newcomer node connects to d = 10 nodes

RS code MSR code MBR code

Storage per node « 64 MB

Repair bandwidth fd 640 VIB




EXAMPLE: HDFS RAID RS code vs. MSR/MBR

640 MB file => 10 blocks (14,10) —RS code

BEH B BN EOEEDEBEE

i A B

Data size M = 640 MB
Storage nodes n =14
DC connects to any k = 10 nodes

(aMSRr 14

Newcomer node connects to d = 13 nodes

mmMSR) = (

min _ (M 2n-2 M 2n-2
(“MBR'V MBR) = (k n—k—-1"k 2n—-k—1

M Mn-1
&’ F'ﬂ)

RS code MSR code MBR code
Storage per node « 64 MB 64 VB 98 VB
Repair bandwidth fd 640 MB 208 MB 98 MB
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This talk:

Minimum storage regenerating (MSR) codes
with the following properties:

1. Systematic (k nodes store the original data)
2. Minimized repair bandwidth of systematic nodes

_ . ' _ (M Mn-1
d=n-1 (“MSR' meMSR) _ (k’ k'Z—k)
3. High rate % (# of parity nodesr =n — k is 2 or 3)
4. Small finite field

5. Accessing the minimum number of helper node's

symbols during repairs
# of read symbols = # of transmitted symbols

6. Minimum sub-packetization factor a = r¥/7



Optimal access codes

e Accessing the minimum number of helper node's
symbols during repairs
# of read symbols = # of transmitted symbols

Example: (ﬁ,%(,za) MDS code_
B [
o Bi -
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B+D | | “
MSR,d =n—1,
r=n-—k=2, B+C L
systematic, A+B+D

binary
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Optimal access codes

e Accessing the minimum number of helper node's
symbols during repairs
# of read symbols = # of transmitted symbols

Example: (ﬁ,%(,za) MDS code

B+C
A+B+D

B+C=B+C
A+B+D=(A+C+B+D)+ C

MSR,d =n—1,
r=n-—k=2,
systematic,
binary

()




Optimal access codes

e Accessing the minimum number of helper node's

symbols during repairs

# of read symbols = # of transmitted symbols

Example: (ﬁ,%(,za) MDS code

B+C

MSR,d =n—1,
r=n-—k=2,
systematic,
binary

A+B+D

B+C=B+C
A+B+D=(A+C+B+D)+ C

X

()




Our approach

e Subspace condition*

— The problem of construction of MSR codes is
described by the algebraic problem of
construction of certain matrices and subspaces

* Graph theory
— Perfect matchings in complete hypergraphs

* 1. Tamo, Z. Wang, and J. Bruck, “Access versus bandwidth in codes for storage", IEEE Trans. Inf. Theory, 2014.
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Example: Subspace condition

(4 2 2) MSR code

Encoding:

A+C

B+D

B+C

A+B+D

1
0
v4=((1) 1)v1+(1

f

(1)) vy + ((1)

1 0

IOIA1)
0OITI A,

11




Example: Subspace condition

(4,2,2) MSR code

A
B
C
D

A+C

B+D

B+C

A+B+D

Encoding:

V3 =

{

1
0

0
1
=0 Do) e

10(I A4
0 Il A,

Ay,

A,,

A;—A, areinvertible
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Example: Subspace condition

( ) MSR code

A

B -
-}
D)

"‘*H

Encoding:

10
01

i) v+ (;

[ Ay
[ A

Ay,

A,,

A;—A, areinvertible

11




Example:

code

‘A+C\

B+C

(4,2,2) MSR

L1
=
U3

V4

S12 = S13 = 514 =(0,1)

Subspace condition
Encoding:

= Y3 9

v4=((1) i)v1+((1) (1))172

[ Ay
[ A

10

(S

Aq, A,, A{—A, areinvertible

To repair node 1, node j sends S;jv; and new node 1 gets

S12V; S12V2 0 S12
S13V3 | = S13(v1+v3) =1 Si3 S13 (v
S14V4 S14(A1v1 + Ayv;) S1441 5144,

%1

)

2

11




Example: Subspace condition

Encoding:
T I
! v4=((1) i)v1+((1) (1))172

‘A+C\

o B+C | To repair node 1, node j sends S;jv; and new node 1 gets
4

51202 51202 0 512 s
Sis = S13 = S14 =(0,1) S13V3 | = S13(v1tv7) =| 513 513 (Uz)

S14V4 S14(A1v1 + Ayv;) S1441 5144,

f(IOIA1
0 Il A,

Aq, A,, A{—A, areinvertible

=
V3

To recover v, it should hold

S
1. rank( 13 )=2
514A1

512
2. rank| Si3 | =1
Sl4A2 11




Example: Subspace condition

Encoding:
T I
! v4=((1) i)v1+((1) (1))172

=
V3 A+C

o

B+C | To repair node 1, node j sends S;jv; and new node 1 gets

f(IOIA1
0 Il A,

Aq, A,, A{—A, areinvertible

V4

S12V; S12V2 0 S12 s
S, = S13 = S14 =(0,1) S13V3 | = S13(v1tv7) =| S13 513 (Uz)
$14V4 S14(A1v1 + Azv5) S1441  S144;

To recover v, it should hold

1. rank(Sslj1 ) =2 @ <813>N<S814A;>={0} & <S;3>+< S1,4,>=F5
14411

512
2. rank( S13 >= 1 & <815 >=<8513>=<5144,>

Sl4A2 11




Example: Subspace condition

Encoding:
T I
! v4=((1) i)v1+((1) (1))172

‘A+C\

o B+C | To repair node 1, node j sends S;jv; and new node 1 gets
4

51202 51202 0 512 s
Sis = S13 = S14 =(0,1) S13V3 | = S13(v1tv2) =| S13  Si3 (Uz)

f(IOIA1
0 Il A,

Aq, A,, A{—A, areinvertible

=
V3

51474 S14(A1v1 + A303) 51441 S144
To recover v, it should hold

1 rank(513)=2 & = =[F%
. 514/11 <513>ﬂ< Sl4A1>_{0} & <513> + < 514A1>—]F2

512
2. rank( S13 > =1 & |<81,>=<813>=< §51,4,> Subspace
S1442 condition |




Subspace condition
for (n, k, ) — MSR code

* Encoding: afile f € IF";“ is partitioned into k parts of size a:
f = (vy,v,,...,0%),v; € Fg
f->f-G =(Cq,...,Cp) ,

| IA11'”A(n—k—1)1
where G = S , AijE [nga

[ TA1k "Atn-k-1k

Cj=vj,1 S]Sk
Ck+i = ?zlAijerl <i<n—k

12



Subspace condition
for (n, k, ) — MSR code

* Encoding: afile f € IF";“ is partitioned into k parts of size a:

f = (vy,v,,...,05),V; € [Fg‘
f>f-6G =(Cy..,C) ,

| IA11"'A(n—k—1)1‘
where G = O E ‘

[| [A1k " Am-k-1)k

CJ=U],1S]Sk

axa
, AijE [Fq

Gl

Ck+i = Z?:lAijCj; 1<i<n-—k

Every square block submatrix of G' is invertible
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Subspace condition

for (n, k, ) — MSR code

* Encoding: afile f € IF";“ is partitioned into k parts of size a:

f = (vy,v,,...,05),V; € [Fg‘
f>f-6G =(Cy..,C) ,

| IA11”'A(n—k—1)1‘
where G = O E :

[| [A1k " Am-k-1k

axa
, AijE [Fq

GI

Cj=vj,1 S]Sk
Ck+i =Z;{=1Aijcj11 <i<n—k

Every square block submatrix of G' is invertible

The nonsingular property

12



Subspace condition
for (n, k, ) — MSR code

e Repair of node t:

a

—X
node j € [n]\{t} sends S; C;, where 5, € F_ a,r =n—k.
Si: =< 5> is called the repairing subspace
(the repairing subspace are independent on the helper node*)

S¢ € Fg, dim(S,) =~

* 1. Tamo, Z. Wang, and J. Bruck, “Access versus bandwidth in codes for storage", IEEE Trans. Inf. Theory, 2014.12
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Si: =< 5> is called the repairing subspace

(the repairing subspace are independent on the helper node*)
a

The optimal access property < every S;=<e; , ..., €;, >

r

* 1. Tamo, Z. Wang, and J. Bruck, “Access versus bandwidth in codes for storage", IEEE Trans. Inf. Theory, 2014.12



Subspace condition
for (n, k, ) — MSR code

e Repair of node t:

a

node j € [n]\{t} sends S; C;, where S, € [F‘Zxa,r =n—k.
Si: =< 5> is called the repairing subspace

(the repairing subspace are independent on the helper node*)
a

The optimal access property < every S;=<e; , ..., €;, >

r

1. St-l_StAlt +...+ StA(T'—l)t — ]FglZ
The independence property
2. St =StAl]’] * t, where StAit:z rS(StAit)

The invariance property

* 1. Tamo, Z. Wang, and J. Bruck, “Access versus bandwidth in codes for storage", IEEE Trans. Inf. Theory, 2014.12



Sufficient Condition

* Theorem [TWB14]: Let « and r be integers s.t.r|a . If there
exist subspaces Sy, ..., Sy € Fg of dimension a/r and encoding

matrices A;; € F§*%,i € [r —1],j € [k] which satisfy

1. The nonsingular property:
[A11A@-1)1
Every square block submatrixof | : ¢ ™ is invertible
A1k Ag-1k

2. The independence property:
St_l_StAlt + ...+ St A(T—l)t — IFEI(

3. The invariance property:
St =StAl]'_] +t

Then the corresponding code is an (n, k, ) —MSR code.

13



Sub-Packetization Bound

 Node capacity @ symbols = sub-packetization factor
 Optimal bandwidth=> a >1
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a required to achieve the optimal bandwidth and
optimal access?
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Sub-Packetization Bound

Node capacity a symbols = sub-packetization factor
Optimal bandwidth=> a >1

Q: For a given (n, k), what is the minimum node capacity
a required to achieve the optimal bandwidth and

optimal access? ‘

For a given node capacity of a symbols and a given
number of parity nodes r, what is the maximum number
of systematic nodes k for an optimal access MSR code?
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Sub-Packetization Bound

Node capacity a symbols = sub-packetization factor
Optimal bandwidth => a >1

Q: For a given (n, k), what is the minimum node capacity
a required to achieve the optimal bandwidth and

optimal access?

For a given node capacity of a symbols and a given
number of parity nodes r, what is the maximum number
of systematic nodes k for an optimal access MSR code?

Theorem [TWB14]: Let k be the largest number of
systematic nodes in an (k + 1, k, a) optimal access MSR
code, then

k =rlog,«a
14



Our goal

For k = rlog,a, construct sets of

* subspaces S, ..., Sy € F7 of dimension a/r spanned by vectors
of the standard basis

* Invertible matrices A;; EFg**,1<i<r—-1,1<j<k
which satisfy

1. The nonsingular property: every square block submatrix of
[A11A@-11
R is invertible
A1k Ag-1k

2. The independence property: S§;+S:A;; + ...+ St Ag—1)e = Fg

3. Theinvariance property: 5S¢ =5;4;j,] # 1

for a field size q as small as possible.

15



In particular for 4;; = (Aj)i:

For k = rlog,a, construct aset {(A4;, S;)}*, of
* subspaces S, ..., Sy € [F7 of dimension a/r spanned by vectors
of the standard basis
* Invertible matrices A4, ..., Ay € F5™¢
which satisfy
1. The nonsingular property: every square block submatrix of
IA1"'A1r_1
P is invertible
IAk...AkT—l
2. The independence property:
Si+S:A; + SiAF + ..+ S A = F¢
3. Theinvariance property: S;=5:4;,] #t
for a field size g as small as possible.

16



In particular for 4;; = (Aj)i:

For k = rlog,a, construct aset {(4;,S;)}<, of
* subspaces S, ...,y € 7 of dimension a/r spanned by vectors
of the standard basis

* Invertible matrices A4, ..., 4, € Fg*¢

which satisfy

1. The nonsingular property: every square block submatrix of
14y Ay
S is invertible

independen

IAk...AkT'—l

2. The independence property:
Si+S:A; + SiAF + .+ S A T =TF% |42

3. Theinvariance property: S;=5:4;,] #t As
for a field size q as small as possible.




Known results

Constructions of access-optimal MSR codes with the minimum

sub-packetization factor a = r*/":
number r of finite field size finite field size
parity nodes [TWB 12] [ASK15]

2 k+1 k+1

3 k23k/371 4 1 k + 3\ qk/3+1

(F%7)3
r kT—lrk/T—l + 1 n k/?"+1
(k) r

[TWB 12] I. Tamo, Z. Wang, and J. Bruck, “Long MDS codes for optimal repair bandwidth," ISIT12.
[ASK15] G. K. Agarwal, B. Sasidharan, and P. V. Kumar, “An alternative construction of an access-optimal
regenerating codes with optimal sub-packetization level,” NCC 2015.



Our results

Constructions of access-optimal MSR codes with the minimum

sub-packetization factor a = r*/":
number rof | finite field size | finite field size Our finite
parity nodes [TWB 12] [ASK15] field size g
2 k+1 k+1 k/2+1
3 k23%/3-1 11 (k + 3) ak/3+1 | 2k + 1 odd q
k k + 1 evenq
r kT lpk/r=1 41 T\ k/r+1
(k)r

[TWB 12] I. Tamo, Z. Wang, and J. Bruck, “Long MDS codes for optimal repair bandwidth," ISIT12.
[ASK15] G. K. Agarwal, B. Sasidharan, and P. V. Kumar, “An alternative construction of an access-optimal
regenerating codes with optimal sub-packetization level,” NCC 2015.



Our Construction

e Consider the matrix (¢ 0 - 1
1 O .. 0 ST
A2 c I,
0 . 0 0 .
0 . o/ minpolyA=2" —1

* Notice:

A A A
€g e e, e

19



Our Construction

e Consider the matrix [© Y 1
1 O 0 TXT
A= . cF,
O . 0 0 _
e Notice: 0 ... 1 o/ minpolyAd=2z2" -1

A A A
€o 7€ €,y e B () 4+(ep)A + - H{eg)AT! = FE
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The independence property:
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Our Construction

Consider the matrix (0 © 1
1 O 0 TXT
A= . cF,
O . 0 0 _
Notice: 0 ... 1 o/ minpolyAd=2z2" -1

A A A
€o 7€ €,y e B () 4+(ep)A + - H{eg)AT! = FE
The subspace (e, )is an independent subspace for A.
An eigenspace is an invariant subspace of A

The independence property:
Si+SiAr + St AZ + ..+ S A = F¢

The invariance property:
St =StAj’j Ft

=
(o}




Our Construction

Consider the matrix
AL

Notice:

0 0
1 0
o .
0 ---

1
0 X
E]Fg’"
0 0
0

| minpolyA =" — 1

A A A
€ €y €y el MY (€g)+ (€ A + -+ H{eg)AT ! = Fq

The subspace (e, )is an independent subspace for A.

An eigenspace is an invariant subspace of A

— The eigenvalues of A are the roots of unity of order r

’)/0:1,’}/1,...

— The eigenvectors are

{(177%771,27

r—1

Y

)

s Yr—1

r—1
1=0 °

The independence property:
Si+SiAr + St AZ + ..+ S A = F¢

The invariance property:
St =StAj’j Ft

=
(o}




Our Construction

A
(4) = e
A

 The subspace S = (eg, e, sy, ...,€q_y)
is an independent subspace

* Let diag

a/r

o O _= O

o O o =

20



Our Construction

A 0O O 1
: 1 0 0
Let dlaga/r(A) = AL o
A 0 1 0
The subspace S = (eg, e, €24, ..., €q—y)
is an independent subspace
A 1 Po - A Po
Let M = P, dlaga/r(A)PMz : :
Pg-1 AJ \pa-1

The subspace ({Po, Pr, P2r, - - - }) is an independent
subspace for M. o
9 /r—1
Subspaces of the form <{pm' T VjPrit1 T ViPriv2 T 5., >
are eigenspaces, and thus also invariant subspaces.
20



Problems:

* Choose the change-of-basis matrices P, such that
the invariance and the independence property
(for all M’s) are satisfied.

* Modify each M (multiply by a field constant A)such
that the nonsingular property is satisfied
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Problems:

* Choose the change-of-basis matrices P, such that
the invariance and the independence property
(for all M’s) are satisfied.

* Modify each M (multiply by a field constant A)such
that the nonsingular property is satisfied

Solution:

Based on perfect matchings in uniform hypergraphs

21



Perfect matchings in uniform hypergraphs

* r-uniform hypergraph - edges are sets of r vertices
(if r = 2 then a standard graph)

* Matching — a set of mutually disjoint edges

* Perfect matching —a matching that covers all the vertices
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Perfect matchings in uniform hypergraphs

r-uniform hypergraph - edges are sets of r vertices
(if r = 2 then a standard graph)

Matching — a set of mutually disjoint edges
Perfect matching —a matching that covers all the vertices
Let K, be a complete r-uniform hypergraph whose a vertices

are colored in r colors.
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Perfect matchings in uniform hypergraphs

r-uniform hypergraph - edges are sets of r vertices
(if r = 2 then a standard graph)

Matching — a set of mutually disjoint edges
Perfect matching —a matching that covers all the vertices

Let K, be a complete r-uniform hypergraph whose a vertices
are colored in r colors.

Perfect colored matching in K} — a perfect matching where no

edge contains two vertices of the same color.

KZ
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Perfect matchings in uniform hypergraphs

r-uniform hypergraph - edges are sets of r vertices
(if r = 2 then a standard graph)

Matching — a set of mutually disjoint edges
Perfect matching —a matching that covers all the vertices

Let K, be a complete r-uniform hypergraph whose a vertices
are colored in r colors.
Perfect colored matching in K} — a perfect matching where no

edge contains two vertices of the same color.
(1000)  (0100)

We identify a unit vectors ey, ..., e,_1

of length @ with the a vertices of K. (0001) 2 (0010)
4
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Change Basis Matrices from Matchings

eo, .-, €q—1 & a vertices of K/, r=3
9
@
@,

@
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Change Basis Matrices from Matchings

eo, .-, €q—1 & a vertices of K/, r=3
Let M be a perfect colored matching. O
©0
oD
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Change Basis Matrices from Matchings

edgeq o
eo, .-, €q—1 & a vertices of K/, — ?dge4

Let M be a perfect colored matching.  edge:

edges

©

23



Change Basis Matrices from Matchings

edgeq
=3
eo, .-, €q—1 & a vertices of K/, - cdge.

Let M be a perfect colored matching. O
* M contributes r pairs, {(Si,, An,) }i_; ‘

edges

such that
s
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Change Basis Matrices from Matchings

edgeq
=3
eo, .-, €q—1 & a vertices of K/, - cdge.

Let M be a perfect colored matching. O
* M contributes r pairs, {(Si,, An,) }i_; ‘

edges

such that O
Snr, = (reds) Sy, = (blacks) ) )

T
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Change Basis Matrices from Matchings

edgeq
=3
eo, .-, €q—1 & a vertices of K/, - cdge.

Let M be a perfect colored matching. O
* M contributes r pairs, {(Si,, An,) }i_; ‘

edges

such that O
Snr, = (reds) Sy, = (blacks) = { ) )

All repair subspaces are spanned by unit vectors
then access-optimal code
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Change Basis Matrices from Matchings

edgeq
=3
eo, .-, €q—1 & a vertices of K/, - cdge.

Let M be a perfect colored matching. O
* M contributes r pairs, {(Si,, An,) }i_; ‘

edges

such that O
Snr, = (reds) Sy, = (blacks) = { ) )
( [ | ] )
a function of edgeq

\ [ a function of edgea/r ] )
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Change Basis Matrices from Matchings

(
Ensure that
Swm, is an independent subspac

\SMJ. is an eigenspace, fori # j

eﬁ

L

)
a function of edgeq

\ [ a function of 6dg€a/r ] )
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Change Basis Matrices from Matchings

(
Ensure that
Swu, is an independent subspace

\SMJ. is an eigenspace, fori # j

)
a function of edgeq

a function of edge

A ,

ajr
e.g.,
4 R 1 0 0 €0
afunctionof | — [ 1 —% ,}/11_1 s Z>
L m
O edgeq L -,
- J 5
p M, Eigenspace for 7)1
eage For AZ\/& : SM2 Independent
subspace;

Eigenspace for 7yo ”



From One Matching
to Many Matchings

* One matching contributes 7 pairs
 More than one matching?

25



From One Matching
to Many Matchings

* One matching contributes 7 pairs
 More than one matching?

e Construct codes from different matchings which
satisfy a mutual relation:

— Each edge in one matching is monochromatic in
any other matching.
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From One Matching
to Many Matchings

One matching contributes r pairs
More than one matching?

Construct codes from different matchings which
satisfy a mutual relation:

— Each edge in one matching is monochromatic in
any other matching.

Can construct k /1 such mathchings

\ 4
ke pairs: {(Sy}, Ay )t U U {(SaT, Ay},

25



The Nonsingular Property

* So far, the construction works for any number r of
parities.

 What about the nonsingular property?

IAl...Alr_l
— VY square block submatrixof | : : ™ is nonsingular
IAk...AkT'—l
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The Nonsingular Property

* So far, the construction works for any number r of
parities.

 What about the nonsingular property?

IAl...Alr_l

— V square block submatrix of is nonsingular

(A eeeg 71
* A; is nonsingular i Ay

* Forr = 2 parities:
¢ rank(Al- — A]) =
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The Nonsingular Property

* So far, the construction works for any number r of

parities.

 What about the nonsingular property?

— V square block submatrix of

* A;isnonsingular

IAl...Alr_l

IAk...AkT'—l

is nonsingular

For r = 2 parities:
¢ rank(Al- — A]) =

For r = 3 parities:

* rank(4; —4;) = «a
* rank(4? — Az) =q
* Non singularity of (

I A A2
I A; A2
I A, A

) |

26



The Nonsingular Property

* Qur solution:
A; => L A; 0+ A € Fy, A; = A; for the same matching
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The Nonsingular Property

 Qur solution:

A; => L A; 0+ A € Fy, A; = A; for the same matching

* Forr = 2 parities:

q=k/2 +1

* Forr = 3 parities:

2k + 1 forodd g

qZ{k+1forevenq
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Our results

Constructions of access-optimal MSR codes with the minimum

sub-packetization factor a = r*/":

number rof | finite field size | finite field size Our finite

parity nodes [TWB 12] [ASK15] field size q
2 k+1 k+1 k/2+1

[TWB 12] I. Tamo, Z. Wang, and J. Bruck, “Long MDS codes for optimal repair bandwidth," ISIT12.
[ASK15] G. K. Agarwal, B. Sasidharan, and P. V. Kumar, “An alternative construction of an access-optimal
regenerating codes with optimal sub-packetization level,” NCC 2015.
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Our results

Constructions of access-optimal MSR codes with the minimum

sub-packetization factor a = r*/":
number rof | finite field size | finite field size Our finite
parity nodes [TWB 12] [ASK15] field size q
2 k+1 k+1 k/2+1
3 k23%/3-1 11 (k + 3) ak/3+1 | 2k + 1 odd q
k k + 1 evenq
r kT lpk/r=1 41 T\ k/r+1
(k) r ?

[TWB 12] I. Tamo, Z. Wang, and J. Bruck, “Long MDS codes for optimal repair bandwidth," ISIT12.
[ASK15] G. K. Agarwal, B. Sasidharan, and P. V. Kumar, “An alternative construction of an access-optimal
regenerating codes with optimal sub-packetization level,” NCC 2015.



Future Research

* Nonsingularity for more than three parities.
* Reduce the field size.
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Future Research

* Nonsingularity for more than three parities.
* Reduce the field size.

° |In general:

Non-systematic node failure.
More than one simultaneous failures?
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Thank you!



