DARNEC'15

Design and Application of Random Network Codes

Istanbul Technical University

Access-optimal MSR codes with optimal sub-packetization over small fields

Natalia Silberstein

Joint work with
Netanel Raviv and Tuvi Etzion

- Failures are the norm rather than the exception
- Redundancy for reliability
 - Replication
 - Erasure coding

Coding for distributed storage system

Using an (n, k) MDS code:

- Partition the original data into k packets.
- Generate n packets.
 Store each packet in a different node.

Coding for distributed storage system

Using an (n, k) MDS code:

- Partition the original data into k packets.
- Generate n packets.
 Store each packet in a different node.

(n, k) MDS property: reconstruct the stored data from any k nodes

The system can tolerate any n - k node failures

Node repair

 If only one node fails, how to rebuild the redundancy?

Node repair

- If only one node fails, how to rebuild the redundancy?
- Naïve method: to reconstruct the whole data from k nodes

Node repair

- If only one node fails, how to rebuild the redundancy?
- Naïve method: to reconstruct the whole data from k nodes
- Solution:
 regenerating
 codes[DimGodWaiRam07]
 for efficient single
 node repairs

- To reduce the repair bandwidth, during a node repair
 - communicate with more nodes,
 - but download only part of their stored data

- To reduce the repair bandwidth, during a node repair
 - communicate with more nodes,
 - but download only part of their stored data

Example: (4,2) MDS code

- To reduce the repair bandwidth, during a node repair
 - communicate with more nodes,
 - but download only part of their stored data

- To reduce the repair bandwidth, during a node repair
 - communicate with more nodes,
 - but download only part of their stored data

- To reduce the repair bandwidth, during a node repair
 - communicate with more nodes,
 - but download only part of their stored data

- To reduce the repair bandwidth, during a node repair
 - communicate with more nodes,
 - but download only part of their stored data

- To reduce the repair bandwidth, during a node repair
 - communicate with more nodes,
 - but download only part of their stored data

- To reduce the repair bandwidth, during a node repair
 - communicate with more nodes,
 - but download only part of their stored data

- To reduce the repair bandwidth, during a node repair
 - communicate with more nodes,
 - but download only part of their stored data

System model:(n, k)-DSS

- [DimGodWaiRam07] established a tradeoff between storage α vs. repair bandwidth $\gamma = \beta d$ for an (n, k) DSS
- 2 extreme points of the trade-off:

MSR (minimum storage) :
$$(\alpha_{MSR}, \gamma_{MSR}) = (\frac{M}{k}, \frac{Md}{k(d-k+1)})$$

MBR (minimum bandwidth) :
$$(\alpha_{MBR}, \gamma_{MBR}) = \left(\frac{2Md}{2kd-k^2+k'}, \frac{2Md}{2kd-k^2+k}\right)$$

- [DimGodWaiRam07] established a tradeoff between storage α vs. repair bandwidth $\gamma = \beta d$ for an (n, k) DSS
- 2 extreme points of the trade-off:

MSR (minimum storage) :
$$(\alpha_{MSR}, \gamma_{MSR}) = \left(\frac{M}{k}, \frac{Md}{k(d-k+1)}\right)$$

For $d = n - 1$, γ_{MSR} is minimized:
$$\left(\alpha_{MSR}, \gamma^{min}_{MSR}\right) = \left(\frac{M}{k}, \frac{M}{k} \cdot \frac{n-1}{n-k}\right)$$

MBR (minimum bandwidth) :
$$(\alpha_{MBR}, \gamma_{MBR}) = \left(\frac{2Md}{2kd-k^2+k'}, \frac{2Md}{2kd-k^2+k}\right)$$

For $d=n-1$, γ_{MBR} is minimized:
$$\left(\alpha_{MBR}, \gamma^{min}_{MBR}\right) = \left(\frac{M}{k}, \frac{2n-2}{2n-k-1}, \frac{M}{k}, \frac{2n-2}{2n-k-1}\right)$$

- [DimGodWaiRam07] established a tradeoff between storage α vs. repair bandwidth $\gamma = \beta d$ for an (n, k) DSS
- 2 extreme points of the trade-off:

```
MSR (minimum storage) : (\alpha_{MSR}, \gamma_{MSR}) = \begin{pmatrix} \frac{M}{k}, \frac{Md}{k} \end{pmatrix} Each node sends a fraction \frac{1}{n-k} of its stored symbols  \left(\alpha_{MSR}, \gamma^{min}_{MSR}\right) = \begin{pmatrix} \frac{M}{k}, \frac{M}{k} \cdot \frac{n-1}{n-k} \end{pmatrix}
```

```
MBR (minimum bandwidth) : (\alpha_{MBR}, \gamma_{MBR}) = \left(\frac{2Md}{2kd-k^2+k}, \frac{2Md}{2kd-k^2+k}\right)

For d=n-1, \gamma_{MBR} is minimized: \left(\alpha_{MBR}, \gamma^{min}_{MBR}\right) = \left(\frac{M}{k}, \frac{2n-2}{2n-k-1}, \frac{M}{k}, \frac{2n-2}{2n-k-1}\right)
```

- [DimGodWaiRam07] established a tradeoff between storage α vs. repair bandwidth $\gamma = \beta d$ for an (n, k) DSS
- 2 extreme points of the trade-off:

MSR (minimum storage) :
$$(\alpha_{MSR}, \gamma_{MSR}) = (\frac{Md}{(d-k+1)})$$

For $d = n-1$, γ_{M} MDS array codes $(\frac{Md}{(d-k+1)})$
 $(MSR, \gamma^{min}_{MSR}) = (\frac{M}{k}, \frac{M}{k}, \frac{n-1}{n-k})$

MBR (minimum bandwidth) :
$$(\alpha_{MBR}, \gamma_{MBR}) = \left(\frac{2Md}{2kd-k^2+k'}, \frac{2Md}{2kd-k^2+k}\right)$$

For $d=n-1$, γ_{MBR} is minimized:
$$\left(\alpha_{MBR}, \gamma^{min}_{MBR}\right) = \left(\frac{M}{k}, \frac{2n-2}{2n-k-1}, \frac{M}{k}, \frac{2n-2}{2n-k-1}\right)$$

EXAMPLE: HDFS RAID RS code vs. MSR/MBR

Data size M = 640 MB

Storage nodes n = 14

DC connects to any k = 10 nodes

Newcomer node connects to d = 10 nodes

	RS code	MSR code	MBR code
Storage per node α	64 MB		
Repair bandwidth βd	640 MB		

EXAMPLE: HDFS RAID RS code vs. MSR/MBR

Data size M = 640 MBStorage nodes n = 14DC connects to any k = 10 nodes

$$\left(\alpha_{MSR}, \gamma^{min}_{MSR}\right) = \left(\frac{M}{k}, \frac{M}{k}, \frac{n-1}{n-k}\right)$$

$$\left(\alpha_{MBR}, \gamma^{min}_{MBR}\right) = \left(\frac{M}{k}, \frac{2n-2}{2n-k-1}, \frac{M}{k}, \frac{2n-2}{2n-k-1}\right)$$

Newcomer node connects to d = 13 nodes

	RS code	MSR code	MBR code
Storage per node α	64 MB	64 MB	98 MB
Repair bandwidth βd	640 MB	208 MB	98 MB

Minimum storage regenerating (MSR) codes with the following properties:

Minimum storage regenerating (MSR) codes with the following properties:

1. Systematic (k nodes store the original data)

Minimum storage regenerating (MSR) codes with the following properties:

- 1. Systematic (k nodes store the original data)
- 2. Minimized repair bandwidth of systematic nodes

$$d=n-1$$
; $\left(\alpha_{MSR}, \gamma^{min}_{MSR}\right) = \left(\frac{M}{k}, \frac{M}{k}, \frac{n-1}{n-k}\right)$

Minimum storage regenerating (MSR) codes with the following properties:

- 1. Systematic (k nodes store the original data)
- 2. Minimized repair bandwidth of systematic nodes

$$d=n-1$$
; $\left(\alpha_{MSR}, \gamma^{min}_{MSR}\right) = \left(\frac{M}{k}, \frac{M}{k}, \frac{n-1}{n-k}\right)$

3. High rate $\frac{k}{n}$ (# of parity nodes r = n - k is 2 or 3)

Minimum storage regenerating (MSR) codes with the following properties:

- 1. Systematic (k nodes store the original data)
- 2. Minimized repair bandwidth of systematic nodes

$$d=n-1$$
; $\left(\alpha_{MSR}, \gamma^{min}_{MSR}\right) = \left(\frac{M}{k}, \frac{M}{k}, \frac{n-1}{n-k}\right)$

- 3. High rate $\frac{k}{n}$ (# of parity nodes r = n k is 2 or 3)
- 4. Small finite field

Minimum storage regenerating (MSR) codes with the following properties:

- 1. Systematic (k nodes store the original data)
- 2. Minimized repair bandwidth of systematic nodes

$$d=n-1$$
; $\left(\alpha_{MSR}, \gamma^{min}_{MSR}\right) = \left(\frac{M}{k}, \frac{M}{k}, \frac{n-1}{n-k}\right)$

- 3. High rate $\frac{k}{n}$ (# of parity nodes r = n k is 2 or 3)
- 4. Small finite field
- Accessing the minimum number of helper node's symbols during repairs

Minimum storage regenerating (MSR) codes with the following properties:

- 1. Systematic (k nodes store the original data)
- 2. Minimized repair bandwidth of systematic nodes

$$d=n-1$$
; $\left(\alpha_{MSR}, \gamma^{min}_{MSR}\right) = \left(\frac{M}{k}, \frac{M}{k}, \frac{n-1}{n-k}\right)$

- 3. High rate $\frac{k}{n}$ (# of parity nodes r = n k is 2 or 3)
- 4. Small finite field
- 5. Accessing the minimum number of helper node's symbols during repairs

of read symbols = # of transmitted symbols

6. Minimum sub-packetization factor $\alpha = r^{k/r}$

Optimal access codes

Accessing the minimum number of helper node's symbols during repairs

Optimal access codes

Accessing the minimum number of helper node's symbols during repairs

Optimal access codes

Accessing the minimum number of helper node's symbols during repairs

Optimal access codes

Accessing the minimum number of helper node's symbols during repairs

of read symbols = # of transmitted symbols

Optimal access codes

Accessing the minimum number of helper node's symbols during repairs

of read symbols = # of transmitted symbols

Our approach

- Subspace condition*
 - The problem of construction of MSR codes is described by the algebraic problem of construction of certain matrices and subspaces
- Graph theory
 - Perfect matchings in complete hypergraphs

$$\begin{aligned} v_3 &= \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} v_1 + \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} v_2 \\ v_4 &= \begin{pmatrix} \mathbf{0} & \mathbf{1} \\ \mathbf{1} & \mathbf{1} \end{pmatrix} v_1 + \begin{pmatrix} \mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} \end{pmatrix} v_2 \\ \mathbf{f} \begin{pmatrix} \mathbf{I} & 0 & \mathbf{I} & A_1 \\ 0 & \mathbf{I} & \mathbf{I} & A_2 \end{pmatrix} \end{aligned}$$

$$v_3 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} v_1 + \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} v_2$$
$$v_4 = \begin{pmatrix} \mathbf{0} & \mathbf{1} \\ \mathbf{1} & \mathbf{1} \end{pmatrix} v_1 + \begin{pmatrix} \mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} \end{pmatrix} v_2$$

$$\mathbf{f} \begin{pmatrix} \mathbf{I} & \mathbf{0} & \mathbf{I} & A_1 \\ \mathbf{0} & \mathbf{I} & \mathbf{I} & A_2 \end{pmatrix}$$

 A_1 , A_2 , A_1-A_2 are invertible

Encoding:

$$v_3 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} v_1 + \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} v_2$$
$$v_4 = \begin{pmatrix} \mathbf{0} & \mathbf{1} \\ \mathbf{1} & \mathbf{1} \end{pmatrix} v_1 + \begin{pmatrix} \mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} \end{pmatrix} v_2$$

$$\mathbf{f} \begin{pmatrix} \mathbf{I} & \mathbf{0} & \mathbf{I} & A_1 \\ \mathbf{0} & \mathbf{I} & \mathbf{I} & A_2 \end{pmatrix}$$

 A_1 , A_2 , A_1-A_2 are invertible

Encoding:

$$v_3 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} v_1 + \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} v_2$$
$$v_4 = \begin{pmatrix} \mathbf{0} & \mathbf{1} \\ \mathbf{1} & \mathbf{1} \end{pmatrix} v_1 + \begin{pmatrix} \mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} \end{pmatrix} v_2$$

$$\mathbf{f} \begin{pmatrix} \mathbf{I} & \mathbf{0} & \mathbf{I} & A_1 \\ \mathbf{0} & \mathbf{I} & \mathbf{I} & A_2 \end{pmatrix}$$

 A_1 , A_2 , A_1-A_2 are invertible

$$v_4$$
 B+C A+B+D

To repair node 1, node j sends $S_{1j}v_j$ and new node 1 gets

$$\begin{pmatrix} S_{12}v_2 \\ S_{13}v_3 \\ S_{14}v_4 \end{pmatrix} = \begin{pmatrix} S_{12}v_2 \\ S_{13}(v_1 + v_2) \\ S_{14}(A_1v_1 + A_2v_2) \end{pmatrix} = \begin{pmatrix} 0 & S_{12} \\ S_{13} & S_{13} \\ S_{14}A_1 & S_{14}A_2 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}$$

To recover v_1 it should hold

1.
$$\operatorname{rank}\binom{S_{13}}{S_{14}A_1} = 2$$

 $S_{12} = S_{13} = S_{14} = (0,1)$

2.
$$\operatorname{rank}\begin{pmatrix} S_{12} \\ S_{13} \\ S_{14}A_2 \end{pmatrix} = 1$$

11

Encoding:

$$v_3 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} v_1 + \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} v_2$$
$$v_4 = \begin{pmatrix} \mathbf{0} & \mathbf{1} \\ \mathbf{1} & \mathbf{1} \end{pmatrix} v_1 + \begin{pmatrix} \mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} \end{pmatrix} v_2$$

$$\mathbf{f} \begin{pmatrix} \mathbf{I} & \mathbf{0} & \mathbf{I} & A_1 \\ \mathbf{0} & \mathbf{I} & \mathbf{I} & A_2 \end{pmatrix}$$

 A_1 , A_2 , A_1-A_2 are invertible

$$v_4$$
 B+C A+B+D

To repair node 1, node j sends
$$S_{1j}v_j$$
 and new node 1 gets
$$\begin{pmatrix} S_{12}v_2 \\ S_{13}v_3 \\ S_{14}v_4 \end{pmatrix} = \begin{pmatrix} S_{12}v_2 \\ S_{13}(v_1+v_2) \\ S_{14}(A_1v_1+A_2v_2) \end{pmatrix} = \begin{pmatrix} 0 & S_{12} \\ S_{13} & S_{13} \\ S_{14}A_1 & S_{14}A_2 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}$$

To recover v_1 it should hold

 $S_{12} = S_{13} = S_{14} = (0,1)$

1.
$$\operatorname{rank} {S_{13} \choose S_{14}A_1} = 2 \iff \langle S_{13} \rangle \cap \langle S_{14}A_1 \rangle = \{0\} \Leftrightarrow \langle S_{13} \rangle + \langle S_{14}A_1 \rangle = \mathbb{F}_2^2$$

2.
$$\operatorname{rank}\begin{pmatrix} S_{12} \\ S_{13} \\ S_{14}A_2 \end{pmatrix} = 1 \iff \langle S_{12} \rangle = \langle S_{13} \rangle = \langle S_{14}A_2 \rangle$$

Encoding:

$$v_3 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} v_1 + \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} v_2$$
$$v_4 = \begin{pmatrix} \mathbf{0} & \mathbf{1} \\ \mathbf{1} & \mathbf{1} \end{pmatrix} v_1 + \begin{pmatrix} \mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} \end{pmatrix} v_2$$

$$\mathbf{f} \begin{pmatrix} \mathbf{I} & \mathbf{0} & \mathbf{I} & A_1 \\ \mathbf{0} & \mathbf{I} & \mathbf{I} & A_2 \end{pmatrix}$$

 A_1 , A_2 , A_1-A_2 are invertible

 $S_{12} = S_{13} = S_{14} = (0,1)$

To repair node 1, node j sends
$$S_{1j}v_j$$
 and new node 1 gets $\begin{pmatrix} S_{12}v_2 \\ S_{13}v_3 \\ S_{14}v_4 \end{pmatrix} = \begin{pmatrix} S_{12}v_2 \\ S_{13}(v_1+v_2) \\ S_{14}(A_1v_1+A_2v_2) \end{pmatrix} = \begin{pmatrix} 0 & S_{12} \\ S_{13} & S_{13} \\ S_{14}A_1 & S_{14}A_2 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}$

To recover v_1 it should hold

1.
$$\operatorname{rank} {S_{13} \choose S_{14} A_1} = 2 \Leftrightarrow$$

2.
$$\operatorname{rank}\begin{pmatrix} S_{12} \\ S_{13} \\ S_{14}A_2 \end{pmatrix} = 1 \Leftrightarrow \langle S_{12} \rangle = \langle S_{13} \rangle = \langle S_{14}A_2 \rangle$$

1.
$$\operatorname{rank} {S_{13} \choose S_{14}A_1} = 2 \Leftrightarrow \{S_{13} > \cap \langle S_{14}A_1 \rangle = \{0\} \Leftrightarrow \langle S_{13} \rangle + \langle S_{14}A_1 \rangle = \mathbb{F}_2^2$$

Subspace

• **Encoding:** a file $f \in \mathbb{F}_q^{k\alpha}$ is partitioned into k parts of size α :

$$\mathbf{f} = (v_1, v_2, \dots, v_k), v_i \in \mathbb{F}_q^{\alpha}$$

$$\mathbf{f} \to \mathbf{f} \cdot G = (C_1, \dots, C_n) ,$$

where
$$G = \begin{pmatrix} \mathbf{I} & \mathbf{I}A_{11}\cdots A_{(n-k-1)1} \\ \ddots & \vdots & \ddots & \vdots \\ & \mathbf{I} & \mathbf{I}A_{1k}\cdots A_{(n-k-1)k} \end{pmatrix}$$
, $A_{ij} \in \mathbb{F}_q^{\alpha \times \alpha}$

$$C_j = v_j, 1 \le j \le k$$

$$C_{k+i} = \sum_{j=1}^k A_{ij} C_j, 1 \le i \le n-k$$

• **Encoding:** a file $f \in \mathbb{F}_q^{k\alpha}$ is partitioned into k parts of size α :

$$\mathbf{f} = (v_1, v_2, \dots, v_k), v_i \in \mathbb{F}_q^{\alpha}$$

$$\mathbf{f} \to \mathbf{f} \cdot G = (C_1, \dots, C_n) ,$$

where
$$G = \begin{pmatrix} I & I \\ \ddots & I \\ IA_{11} \cdots A_{(n-k-1)1} \\ \vdots & \vdots & \vdots \\ IA_{1k} \cdots A_{(n-k-1)k} \end{pmatrix}$$
, $A_{ij} \in \mathbb{F}_q^{\alpha \times \alpha}$

$$C_j = v_j, 1 \le j \le k$$

$$C_{k+i} = \sum_{j=1}^k A_{ij}C_j, 1 \le i \le n-k$$

Every square block submatrix of G' is invertible

• **Encoding:** a file $f \in \mathbb{F}_q^{k\alpha}$ is partitioned into k parts of size α :

$$\mathbf{f} = (v_1, v_2, \dots, v_k), v_i \in \mathbb{F}_q^{\alpha}$$

$$\mathbf{f} \to \mathbf{f} \cdot G = (C_1, \dots, C_n) ,$$

where
$$G = \begin{pmatrix} I & IA_{11} \cdots A_{(n-k-1)1} \\ \vdots & \vdots & \vdots \\ IA_{1k} \cdots A_{(n-k-1)k} \end{pmatrix}$$
, $A_{ij} \in \mathbb{F}_q^{\alpha \times \alpha}$

$$C_j = v_j, 1 \le j \le k$$

$$C_{k+i} = \sum_{j=1}^k A_{ij}C_j, 1 \le i \le n-k$$

Every square block submatrix of G' is invertible

The nonsingular property

Repair of node t:

node $j \in [n] \setminus \{t\}$ sends S_t C_j , where $S_t \in \mathbb{F}_q^{\frac{\alpha}{r} \times \alpha}$, r = n - k.

 S_t : =< S_t > is called the repairing subspace

(the repairing subspace are independent on the helper node*)

$$\mathbb{S}_t \subseteq \mathbb{F}_q^{\alpha}$$
, $\dim(\mathbb{S}_t) = \frac{\alpha}{r}$.

• Repair of node t:

node $j \in [n] \setminus \{t\}$ sends S_t C_j , where $S_t \in \mathbb{F}_q^{\frac{\alpha}{r} \times \alpha}$, r = n - k.

 S_t : =< S_t > is called the repairing subspace

(the repairing subspace are independent on the helper node*)

$$\mathbb{S}_t \subseteq \mathbb{F}_q^{\alpha}$$
, $\dim(\mathbb{S}_t) = \frac{\alpha}{r}$.

The optimal access property \Leftrightarrow every $\mathbb{S}_t = < e_{i_1}, \dots, e_{i_{\frac{l}{x}}} >$

^{*} I. Tamo, Z. Wang, and J. Bruck, "Access versus bandwidth in codes for storage", IEEE Trans. Inf. Theory, 2014.12

• Repair of node t:

node $j \in [n] \setminus \{t\}$ sends S_t C_j , where $S_t \in \mathbb{F}_q^{\frac{\alpha}{r} \times \alpha}$, r = n - k.

 S_t : =< S_t > is called the repairing subspace

(the repairing subspace are independent on the helper node*)

$$\mathbb{S}_t \subseteq \mathbb{F}_q^{\alpha}$$
, $\dim(\mathbb{S}_t) = \frac{\alpha}{r}$.

The optimal access property \Leftrightarrow every \mathbb{S}_t = $< e_{i_1}, \dots, e_{i_{\frac{l}{r}}} >$

1.
$$\mathbb{S}_t + \mathbb{S}_t A_{1t} + \dots + \mathbb{S}_t A_{(r-1)t} = \mathbb{F}_q^{\alpha}$$

The independence property

2.
$$S_t = S_t A_{ij}, j \neq t$$
, where $S_t A_{it} := rs(S_t A_{it})$

The invariance property

^{*} I. Tamo, Z. Wang, and J. Bruck, "Access versus bandwidth in codes for storage", IEEE Trans. Inf. Theory, 2014.12

Sufficient Condition

- Theorem [TWB14]: Let α and r be integers s.t. $r|\alpha$. If there exist subspaces $\mathbb{S}_1, \ldots, \mathbb{S}_k \subseteq \mathbb{F}_q^{\alpha}$ of dimension α/r and encoding matrices $A_{ij} \in \mathbb{F}_q^{\alpha \times \alpha}, i \in [r-1], j \in [k]$ which satisfy
- 1. The nonsingular property:

Every square block submatrix of
$$\begin{pmatrix} IA_{11}\cdots A_{(r-1)1} \\ \vdots & \ddots & \vdots \\ IA_{1k}\cdots A_{(r-1)k} \end{pmatrix}$$
 is invertible

2. The independence property:

$$\mathbb{S}_t + \mathbb{S}_t A_{1t} + \dots + \mathbb{S}_t A_{(r-1)t} = \mathbb{F}_q^{\alpha}$$

3. The invariance property:

$$\mathbb{S}_t = \mathbb{S}_t A_{ij}, j \neq t$$

Then the corresponding code is an (n, k, α) –MSR code.

- Node capacity α symbols = sub-packetization factor
- Optimal bandwidth => $\alpha > 1$

- Node capacity α symbols = sub-packetization factor
- Optimal bandwidth => $\alpha > 1$
- **Q:** For a given (n, k), what is the minimum node capacity α required to achieve the optimal bandwidth and optimal access?

- Node capacity α symbols = sub-packetization factor
- Optimal bandwidth => $\alpha > 1$
- Q: For a given (n, k), what is the minimum node capacity α required to achieve the optimal bandwidth and optimal access?
- For a given node capacity of α symbols and a given number of parity nodes r, what is the maximum number of systematic nodes k for an optimal access MSR code?

- Node capacity α symbols = sub-packetization factor
- Optimal bandwidth => $\alpha > 1$
- Q: For a given (n, k), what is the minimum node capacity α required to achieve the optimal bandwidth and optimal access?
- For a given node capacity of α symbols and a given number of parity nodes r, what is the maximum number of systematic nodes k for an optimal access MSR code?
- Theorem [TWB14]: Let k be the largest number of systematic nodes in an $(k+r,k,\alpha)$ optimal access MSR code, then

$$k = r \log_r \alpha$$

Our goal

For $k = r \log_r \alpha$, construct sets of

- subspaces $\mathbb{S}_1, ..., \mathbb{S}_k \subseteq \mathbb{F}_q^{\alpha}$ of dimension α/r spanned by vectors of the standard basis
- Invertible matrices $A_{ij} \in \mathbb{F}_q^{\alpha \times \alpha}, 1 \leq i \leq r-1, 1 \leq j \leq k$ which satisfy
- 1. The nonsingular property: every square block submatrix of

$$\begin{pmatrix} I A_{11} \cdots A_{(r-1)1} \\ \vdots & \vdots & \vdots \\ I A_{1k} \cdots A_{(r-1)k} \end{pmatrix} \text{ is invertible}$$

- 2. The independence property: $\mathbb{S}_t + \mathbb{S}_t A_{1t} + ... + \mathbb{S}_t A_{(r-1)t} = \mathbb{F}_q^{\alpha}$
- 3. The invariance property: $\mathbb{S}_t = \mathbb{S}_t A_{ij}, j \neq t$ for a field size q as small as possible.

In particular for $A_{ij} = (A_j)^i$:

For $k = r \log_r \alpha$, construct a set $\{(A_i, S_i)\}_{i=1}^k$ of

- subspaces $\mathbb{S}_1,\ldots,\mathbb{S}_k\subseteq\mathbb{F}_q^\alpha$ of dimension α/r spanned by vectors of the standard basis
- Invertible matrices $A_1, \dots, A_k \in \mathbb{F}_q^{\alpha \times \alpha}$ which satisfy
- 1. The nonsingular property: every square block submatrix of

$$\begin{pmatrix} \begin{bmatrix} A_1 \cdots A_1^{r-1} \\ \vdots & \vdots & \vdots \\ A_k \cdots A_k^{r-1} \end{pmatrix} \text{ is invertible}$$

2. The independence property:

$$\mathbb{S}_t + \mathbb{S}_t A_t + \mathbb{S}_t A_t^2 + \dots + \mathbb{S}_t A_t^{r-1} = \mathbb{F}_q^{\alpha}$$

3. The invariance property: $\mathbb{S}_t = \mathbb{S}_t A_j$, $j \neq t$ for a field size q as small as possible.

In particular for $A_{ij} = (A_j)^i$:

For $k = r \log_r \alpha$, construct a set $\{(A_i, S_i)\}_{i=1}^k$ of

- subspaces $\mathbb{S}_1,\ldots,\mathbb{S}_k\subseteq\mathbb{F}_q^\alpha$ of dimension α/r spanned by vectors of the standard basis
- Invertible matrices $A_1, \dots, A_k \in \mathbb{F}_q^{\alpha \times \alpha}$ which satisfy
- 1. The nonsingular property: every square block submatrix of

$$\begin{pmatrix} \begin{bmatrix} A_1 \cdots A_1^{r-1} \\ \vdots & \vdots & \vdots \\ A_k \cdots A_k^{r-1} \end{pmatrix} \text{ is invertible}$$

2. The independence property:

$$\mathbb{S}_t + \mathbb{S}_t A_t + \mathbb{S}_t A_t^2 + \dots + \mathbb{S}_t A_t^{r-1} = \mathbb{F}_q^{\alpha}$$

3. The invariance property: $\mathbb{S}_t = \mathbb{S}_t A_j$, $j \neq t$ for a field size q as small as possible.

Known results

Constructions of access-optimal MSR codes with the minimum sub-packetization factor $\alpha = r^{k/r}$:

number r of parity nodes	finite field size [TWB 12]	finite field size [ASK15]	
2	k + 1	k + 1	
3	$k^2 3^{k/3-1} + 1$	$\binom{k+3}{k} 3^{k/3+1}$	
r	$k^{r-1}r^{k/r-1} + 1$	$\binom{n}{k} r^{k/r+1}$	

[TWB 12] I. Tamo, Z. Wang, and J. Bruck, "Long MDS codes for optimal repair bandwidth," ISIT12. [ASK15] G. K. Agarwal, B. Sasidharan, and P. V. Kumar, "An alternative construction of an access-optimal regenerating codes with optimal sub-packetization level," NCC 2015.

Our results

Constructions of access-optimal MSR codes with the minimum sub-packetization factor $\alpha = r^{k/r}$:

number r of parity nodes	finite field size [TWB 12]	finite field size [ASK15]	Our finite field size q
2	k+1	k+1	k/2 + 1
3	$k^2 3^{k/3-1} + 1$	$\binom{k+3}{k} 3^{k/3+1}$	$2k + 1 \operatorname{odd} q$ $k + 1 \operatorname{even} q$
r	$k^{r-1}r^{k/r-1} + 1$	$\binom{n}{k} r^{k/r+1}$	

[TWB 12] I. Tamo, Z. Wang, and J. Bruck, "Long MDS codes for optimal repair bandwidth," ISIT12. [ASK15] G. K. Agarwal, B. Sasidharan, and P. V. Kumar, "An alternative construction of an access-optimal regenerating codes with optimal sub-packetization level," NCC 2015.

 $\begin{array}{c} \bullet \quad \text{Consider the matrix} \\ & A \triangleq \begin{pmatrix} 0 & 0 & \cdots & 1 \\ 1 & 0 & \cdots & 0 \\ 0 & \cdots & 0 & 0 \\ 0 & \cdots & 1 & 0 \end{pmatrix} \in \mathbb{F}_q^{r \times r} \\ \bullet \quad \underbrace{\text{Motice:}}_{e_0} \overset{A}{\mapsto} e_{r\text{-}1} \overset{A}{\mapsto} e_{r\text{-}2} \overset{A}{\mapsto} \cdots e_1 \\ \end{array}$

• Consider the matrix
$$A \triangleq \begin{pmatrix} 0 & 0 & \cdots & 1 \\ 1 & 0 & \cdots & 0 \\ 0 & \ddots & 0 & 0 \\ 0 & \cdots & 1 & 0 \end{pmatrix} \in \mathbb{F}_q^{r \times r}$$
• Notice:
$$\min poly A = x^r - 1$$

$$\underbrace{e_0 \overset{A}{\mapsto} e_{r-1}}^{A} \overset{A}{\mapsto} e_{r-2} \overset{A}{\mapsto} \cdots e_1 \Longrightarrow \langle e_0 \rangle + \langle e_0 \rangle_{A} + \cdots + \langle e_0 \rangle_{A}^{r-1} = \mathbb{F}_q^{\alpha}$$

• The subspace $\langle e_0 \rangle$ is an **independent** subspace for A.

The independence property:

$$\mathbb{S}_t + \mathbb{S}_t A_t + \mathbb{S}_t A_t^2 + \dots + \mathbb{S}_t A_t^{r-1} = \mathbb{F}_q^{\alpha}$$

The invariance property:

$$\mathbb{S}_t = \mathbb{S}_t A_j, j \neq t$$

• Consider the matrix
$$A \triangleq \begin{pmatrix} 0 & 0 & \cdots & 1 \\ 1 & 0 & \cdots & 0 \\ 0 & \ddots & 0 & 0 \\ 0 & \cdots & 1 & 0 \end{pmatrix} \in \mathbb{F}_q^{r \times r}$$
• Notice:
$$\min poly A = x^r - 1$$

- $e_0 \stackrel{A}{\mapsto} e_{r-1} \stackrel{A}{\mapsto} e_{r-2} \stackrel{A}{\mapsto} \cdots e_1 \implies \langle e_0 \rangle + \langle e_0 \rangle_A + \cdots + \langle e_0 \rangle_A^{r-1} = \mathbb{F}_q^{\alpha}$
- The subspace $\langle e_0 \rangle$ is an **independent** subspace for A.
- An eigenspace is an *invariant* subspace of A

The independence property:

$$\mathbb{S}_t + \mathbb{S}_t A_t + \mathbb{S}_t A_t^2 + \dots + \mathbb{S}_t A_t^{r-1} = \mathbb{F}_q^{\alpha}$$

The invariance property:

$$\mathbb{S}_t = \mathbb{S}_t A_j, j \neq t$$

• Consider the matrix
$$A \triangleq \begin{pmatrix} 0 & 0 & \cdots & 1 \\ 1 & 0 & \cdots & 0 \\ 0 & \ddots & 0 & 0 \\ 0 & \cdots & 1 & 0 \end{pmatrix} \in \mathbb{F}_q^{r \times r}$$
 minpoly $A = x^r - 1$

$$e_0 \overset{A}{\mapsto} e_{r\text{-}1} \overset{A}{\mapsto} e_{r\text{-}2} \quad \overset{A}{\mapsto} \cdots e_1 \implies \langle e_0 \rangle + \langle e_0 \rangle_{\!\!A} + \cdots + \langle e_0 \rangle_{\!\!A}^{r-1} = \mathbb{F}_q^\alpha$$

- The subspace $\langle e_0 \rangle$ is an **independent** subspace for A.
- An eigenspace is an invariant subspace of A
 - The eigenvalues of A are the roots of unity of order r

$$\gamma_0 = 1, \gamma_1, \dots, \gamma_{r-1}$$

The eigenvectors are

$$\{(1, \gamma_i, \gamma_i^2, \cdots, \gamma_i^{r-1})\}_{i=0}^{r-1}$$
.

The independence property:

$$\mathbb{S}_t + \mathbb{S}_t A_t + \mathbb{S}_t A_t^2 + \dots + \mathbb{S}_t A_t^{r-1} = \mathbb{F}_q^{\alpha}$$

The invariance property:

$$\mathbb{S}_t = \mathbb{S}_t A_j, j \neq t$$

• Let
$$\operatorname{diag}_{\alpha/r}(A) = \begin{pmatrix} A & & \\ & \ddots & \\ & & A \end{pmatrix}$$

$$A \triangleq \begin{pmatrix} 0 & 0 & \cdots & 1 \\ 1 & 0 & \cdots & 0 \\ 0 & \ddots & 0 & 0 \\ 0 & \cdots & 1 & 0 \end{pmatrix}$$

• The subspace $S = \langle e_0, e_r, e_{2r}, ..., e_{\alpha-r} \rangle$ is an *independent* subspace

• Let
$$\operatorname{diag}_{\alpha/r}(A) = \begin{pmatrix} A & & \\ & \ddots & \\ & & A \end{pmatrix}$$

$$A \triangleq \begin{pmatrix} 0 & 0 & \cdots & 1 \\ 1 & 0 & \cdots & 0 \\ 0 & \ddots & 0 & 0 \\ 0 & \cdots & 1 & 0 \end{pmatrix}$$

• The subspace $S = \langle e_0, e_r, e_{2r}, ..., e_{\alpha-r} \rangle$ is an *independent* subspace

• Let
$$M \triangleq P_M^{-1} \operatorname{diag}_{\alpha/r}(A) P_M = \begin{pmatrix} p_0 \\ \vdots \\ p_{\alpha-1} \end{pmatrix}^{-1} \begin{pmatrix} A \\ & \ddots \\ & A \end{pmatrix} \begin{pmatrix} p_0 \\ \vdots \\ p_{\alpha-1} \end{pmatrix}$$

- The subspace $\langle \{p_0, p_r, p_{2r}, \ldots \} \rangle$ is an *independent* subspace for M.
- Subspaces of the form $\left\langle \left\{ p_{ri} + \gamma_j p_{ri+1} + \gamma_j^2 p_{ri+2} + \ldots \right\}_{i=0}^{\alpha/r-1} \right\rangle$ are eigenspaces, and thus also *invariant* subspaces.

Problems:

- Choose the change-of-basis matrices P_M such that the *invariance* and the *independence* property (for all M's) are satisfied.
- Modify each M (multiply by a field constant λ) such that the **nonsingular** property is satisfied

<u>Problems</u>:

- Choose the change-of-basis matrices P_M such that the *invariance* and the *independence* property (for all M's) are satisfied.
- Modify each M (multiply by a field constant λ) such that the **nonsingular** property is satisfied

Solution:

Based on perfect matchings in uniform hypergraphs

Perfect matchings in uniform hypergraphs

- r-uniform hypergraph edges are sets of r vertices (if r=2 then a standard graph)
- Matching a set of mutually disjoint edges
- Perfect matching a matching that covers all the vertices

Perfect matchings in uniform hypergraphs

- r-uniform hypergraph edges are sets of r vertices (if r=2 then a standard graph)
- Matching a set of mutually disjoint edges
- Perfect matching a matching that covers all the vertices
- Let K_{α}^{r} be a complete r-uniform hypergraph whose α vertices are colored in r colors.

Perfect matchings in uniform hypergraphs

- r-uniform hypergraph edges are sets of r vertices (if r=2 then a standard graph)
- Matching a set of mutually disjoint edges
- Perfect matching a matching that covers all the vertices
- Let K_{α}^{r} be a complete r-uniform hypergraph whose α vertices are colored in r colors.
 - Perfect colored matching in K_{α}^{r} a perfect matching where no edge contains two vertices of the same color.

Perfect matchings in uniform hypergraphs

- r-uniform hypergraph edges are sets of r vertices (if r=2 then a standard graph)
- Matching a set of mutually disjoint edges
- Perfect matching a matching that covers all the vertices
- Let K_{α}^{r} be a complete r-uniform hypergraph whose α vertices are colored in r colors.
 - Perfect colored matching in K_{α}^{r} a perfect matching where no edge contains two vertices of the same color.
- We identify α unit vectors $e_0, \dots, e_{\alpha-1}$ of length α with the α vertices of K_{α}^r .

 $e_0, \ldots, e_{\alpha-1} \Leftrightarrow \alpha \text{ vertices of } K_{\alpha}^r$

 $e_0, \dots, e_{\alpha-1} \Leftrightarrow \alpha \text{ vertices of } K_{\alpha}^r$

Let \mathcal{M} be a perfect colored matching.

 $e_0, \ldots, e_{\alpha-1} \Leftrightarrow \alpha \text{ vertices of } K_{\alpha}^r$

Let \mathcal{M} be a perfect colored matching.

 $e_0, \dots, e_{\alpha-1} \Leftrightarrow \alpha \text{ vertices of } K_{\alpha}^r$

Let \mathcal{M} be a perfect colored matching.

• \mathcal{M} contributes r pairs, $\{(S_{M_i}, A_{M_i})\}_{i=1}^r$ such that

$$e_0, \dots, e_{\alpha-1} \Leftrightarrow \alpha \text{ vertices of } K_{\alpha}^r$$

Let \mathcal{M} be a perfect colored matching.

• \mathcal{M} contributes r pairs, $\{(S_{M_i}, A_{M_i})\}_{i=1}^r$ such that

$$S_{M_1} = \langle reds \rangle$$
 $S_{M_2} = \langle blacks \rangle$ $S_{M_3} = \langle greens \rangle$

$$e_0, \dots, e_{\alpha-1} \Leftrightarrow \alpha \text{ vertices of } K_{\alpha}^r$$

Let \mathcal{M} be a perfect colored matching.

• \mathcal{M} contributes r pairs, $\{(S_{M_i}, A_{M_i})\}_{i=1}^r$ such that

$$S_{M_1} = \langle reds \rangle$$
 $S_{M_2} = \langle blacks \rangle$ $S_{M_3} = \langle greens \rangle$

All repair subspaces are spanned by *unit* vectors then **access-optimal** code

$$e_0, \dots, e_{\alpha-1} \Leftrightarrow \alpha \text{ vertices of } K_{\alpha}^r$$

Let \mathcal{M} be a perfect colored matching.

• \mathcal{M} contributes r pairs, $\{(S_{M_i}, A_{M_i})\}_{i=1}^r$ such that

$$S_{M_1} = \langle reds \rangle$$
 $S_{M_2} = \langle blacks \rangle$ $S_{M_3} = \langle greens \rangle$

$$A_{M_i} \triangleq P_{M_i}^{-1} \operatorname{diag}_{\alpha/r}(A) P_{M_i}, \quad P_{M_i} \triangleq$$

Ensure that $S_{M_i} \text{ is an independent subspace } S_{M_j} \text{ is an eigenspace, for } i \neq j$ $P_{M_i} \triangleq \begin{bmatrix} & & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & &$

Ensure that

 S_{M_i} is an independent subspace

 S_{M_i} is an eigenspace, for $i \neq j$

a function of $edge_1$

a function of $edge_{\alpha/r}$

e.g.,

$$edge_1$$

a function of
$$edge_1 = \begin{pmatrix} 1 & 0 & 0 \\ 1 & -\frac{\gamma_1}{\gamma_1 - 1} & \frac{1}{\gamma_1 - 1} \\ 1 & \frac{1}{\gamma_1 - 1} & -\frac{\gamma_1}{\gamma_1 - 1} \end{pmatrix} \cdot \begin{pmatrix} e_0 \\ e_5 \\ e_{11} \end{pmatrix}$$

$$0 \\ \frac{1}{\gamma_1 - 1} \\ - \frac{\gamma_1}{\gamma_1}$$

$$\begin{pmatrix} e_0 \\ e_5 \\ e_{11} \end{pmatrix}$$

For $A_{M_{\! 2}}:S_{M_2}$ Independent subspace;

 S_{M_1} Eigenspace for γ_1

 S_{M_3} Eigenspace for γ_2

From One Matching to Many Matchings

- One matching contributes r pairs
- More than one matching?

From One Matching to Many Matchings

- One matching contributes r pairs
- More than one matching?
- Construct codes from different matchings which satisfy a mutual relation:
 - Each edge in one matching is monochromatic in any other matching.

From One Matching to Many Matchings

- One matching contributes r pairs
- More than one matching?
- Construct codes from different matchings which satisfy a mutual relation:
 - Each edge in one matching is monochromatic in any other matching.
- Can construct k/r such mathchings

k pairs: $\{(S_{M_i}^{\ 1}, A_{M_i}^{\ 1})\}_{i=1}^r \cup ... \cup \{(S_{M_i}^{k/r}, A_{M_i}^{k/r})\}_{i=1}^r$

- So far, the construction works for any number r of parities.
- What about the *nonsingular* property?

-
$$\forall$$
 square block submatrix of $\begin{pmatrix} IA_1\cdots A_1^{r-1} \\ \vdots & \ddots & \vdots \\ IA_k\cdots A_k^{r-1} \end{pmatrix}$ is nonsingular

- So far, the construction works for any number r of parities.
- What about the nonsingular property?

- A_i is nonsingular
- For $\underline{r} = \underline{2}$ parities:
 - $rank(A_i A_i) = \alpha$

```
- \forall square block submatrix of \begin{pmatrix} IA_1\cdots A_1' & 1 \\ \vdots & \ddots & \vdots \\ IA_1\cdots A_n & r-1 \end{pmatrix} is nonsingular
```

- So far, the construction works for any number r of parities.
- What about the nonsingular property?
- A_i is nonsingular
- For $\underline{r} = \underline{2}$ parities:
 - rank $(A_i A_i) = \alpha$

- \forall square block submatrix of $\begin{pmatrix} IA_1 \cdots A_1^{r-1} \\ \vdots & \ddots & \vdots \\ IA_1 \cdots & IA_n \end{pmatrix}$ is nonsingular

 - For <u>r = 3</u> parities:
 rank(A_i A_j) = α

 - rank $(A_i^2 A_j^2) = \alpha$ Non singularity of $\begin{pmatrix} I & A_i & A_i^2 \\ I & A_j & A_j^2 \\ I & A_i & A_j^2 \end{pmatrix}$.

Our solution:

$$A_i \Rightarrow \lambda_i A_i$$
 , $0 \neq \lambda_i \in \mathbb{F}_q$, $\lambda_i = \lambda_j$ for the same matching

Our solution:

$$A_i \Rightarrow \lambda_i A_i$$
 , $0 \neq \lambda_i \in \mathbb{F}_q$, $\lambda_i = \lambda_j$ for the same matching

• For r = 2 parities:

$$q=k/2+1$$

• For r = 3 parities:

$$q \ge \begin{cases} 2k + 1 \text{ for odd } q \\ k + 1 \text{ for even } q \end{cases}$$

Our results

Constructions of access-optimal MSR codes with the minimum sub-packetization factor $\alpha = r^{k/r}$:

number r of parity nodes	finite field size	finite field size	Our finite
	[TWB 12]	[ASK15]	field size q
2	k+1	k + 1	k/2 + 1

[TWB 12] I. Tamo, Z. Wang, and J. Bruck, "Long MDS codes for optimal repair bandwidth," ISIT12. [ASK15] G. K. Agarwal, B. Sasidharan, and P. V. Kumar, "An alternative construction of an access-optimal regenerating codes with optimal sub-packetization level," NCC 2015.

Our results

Constructions of access-optimal MSR codes with the minimum sub-packetization factor $\alpha = r^{k/r}$:

number r of parity nodes	finite field size [TWB 12]	finite field size [ASK15]	Our finite field size q
2	k + 1	k+1	k/2 + 1
3	$k^2 3^{k/3-1} + 1$	$\binom{k+3}{k} 3^{k/3+1}$	2k + 1 odd q k + 1 even q

[TWB 12] I. Tamo, Z. Wang, and J. Bruck, "Long MDS codes for optimal repair bandwidth," ISIT12. [ASK15] G. K. Agarwal, B. Sasidharan, and P. V. Kumar, "An alternative construction of an access-optimal regenerating codes with optimal sub-packetization level," NCC 2015.

Our results

Constructions of access-optimal MSR codes with the minimum sub-packetization factor $\alpha = r^{k/r}$:

number r of parity nodes	finite field size [TWB 12]	finite field size [ASK15]	Our finite field size q
2	k+1	k+1	k/2 + 1
3	$k^2 3^{k/3-1} + 1$	$\binom{k+3}{k} 3^{k/3+1}$	2k + 1 odd q k + 1 even q
r	$k^{r-1}r^{k/r-1} + 1$	$\binom{n}{k} r^{k/r+1}$	

[TWB 12] I. Tamo, Z. Wang, and J. Bruck, "Long MDS codes for optimal repair bandwidth," ISIT12. [ASK15] G. K. Agarwal, B. Sasidharan, and P. V. Kumar, "An alternative construction of an access-optimal regenerating codes with optimal sub-packetization level," NCC 2015.

Future Research

- Nonsingularity for more than three parities.
- Reduce the field size.

Future Research

- Nonsingularity for more than three parities.
- Reduce the field size.

In general:

Non-systematic node failure.

More than one simultaneous failures?

Thank you!