ON THE STRUCTURE OF Q-STEINER SYSTEMS

Tuvi Etzion

Computer Science Department

Istanbul, Turkey, November 4, 2015

Outline

q-Steiner Systems

Punctured q-Steiner Systems

The q-Fano Plane

Open Problems and Future Research

The Grassmannian

$$\mathbb{F}_q^n$$
 - vector space of dimension n over \mathbb{F}_q (= GF(q)).

 $G_q(n,k)$ is the set of all k-dimensional subspaces of \mathbb{F}_q^n (the Grassmannian).

Gaussian coefficients (q-binomial coefficient)

$$\begin{bmatrix} n \\ k \end{bmatrix}_{q} = \frac{(q^{n}-1)(q^{n-1}-1)\cdots(q^{n-k+1}-1)}{(q^{k}-1)(q^{k-1}-1)\cdots(q-1)} \begin{bmatrix} G_{q}(n,k) \end{bmatrix} = \begin{bmatrix} n \\ k \end{bmatrix}_{q}$$

q-Steiner Systems

A q-Steiner system $S(t, k, n)_q$ is a pair (N, B), where N is an n-dimensional space over \mathbb{F}_q and B is set of k-dimensional subspaces (called blocks) of N such that each t-dimensional subspace of N is contained in exactly one block of B.

$$\left|S(t,k,n)_{q}\right| = {\binom{n}{t}}_{q} / {\binom{k}{t}}_{q}$$

$\begin{array}{c} \textbf{q-Steiner Systems} \\ \textbf{(x)} \\$

Frobenius map

 $\mathbf{F}(V) = \{\mathbf{0}, \alpha^{2 \cdot i_1}, \alpha^{2 \cdot i_2}, \alpha^{2 \cdot i_3}, \alpha^{2 \cdot i_4}, \alpha^{2 \cdot i_5}, \alpha^{2 \cdot i_6}, \alpha^{2 \cdot i_7}\}$

1 597 245

3-dimensional subspaces

normalizer of Singer subgroup automoprphism

15 representatives

Braun, E., Östergård, Vardy, Wassermann, 2013

q-Steiner Systems

A q-packing system $P(t, k, n)_q$ is a pair (N, B), where N is an n-dimensional space over \mathbb{F}_q and B is set of k-dimensional subspaces (called blocks) of N such that each t-dimensional subspace of N is contained in at most one block of B.

$$\left| P(t,k,n)_{q} \right| \leq {\binom{n}{t}}_{q} / {\binom{k}{t}}_{q}$$

Asymptotic Behavior

$$A(n) \sim B(n)$$
 if $\lim_{n \to \infty} \frac{A(n)}{B(n)} = 1$ as $n \to \infty$.

Given an $n \times m$ array A, the punctured array A' is an $n \times (m-1)$ array obtained from A by deleting one of the columns of A.

For a subspace $X \in G_q(n, k)$ the punctured subspace X' by the *i*th coordinate of X is the subspace obtained by deleting the *i*th coordinate from all the vectors of X.

Lemma A punctured k-subspace is either a k-subspace or a (k-1)-subspace.

Representation of a subspace

A k-subspace X of \mathbb{F}_q^n is represented by a $(q^k - 1) \times n$ matrix which contains the $q^k - 1$ nonzero vectors of X. Each nonzero vector of X is a row in this matrix.

Lemma A punctured k-subspace is either a k-subspace or a (k-1)-subspace.

If the punctured k-subspace X contains the unity vector with a *one* in the *i*th coordinate then X' is a (k-1)-subspace. Otherwise, X' is a k-subspace.

For a set of subspaces S, the punctured set S' is defined as $S' = \{X' : X \in S\}$.

Unless otherwise said, the last coordinate is the punctured one.

A t-subspace X of \mathbb{F}_q^m is extended to a t'-subspace Y of $\mathbb{F}_q^{m'}$, where $t' \ge t$, m' > m, $m' - m \ge t' - t$ if X is the subspace obtained from Y by puncturing m' - m times.

Lemma If X is a t-subspace of \mathbb{F}_q^m then it can be extended in exactly q^t distinct ways to a t-subspace of \mathbb{F}_q^{m+1} .

Lemma If X is a t-subspace of \mathbb{F}_q^m then it can be extended in exactly one way to a (t+1)-subspace of \mathbb{F}_q^{m+1} .

q-STEINER SYSTEMS

$$S(t, k, n; m)$$
, $m = n - p$

A system § of subspaces of \mathbb{F}_q^m , in which each *t*-subspace of \mathbb{F}_q^n can be obtained exactly once by extending *p* times all the subspaces of §. This is done in parallel for all identical subspaces of §.

Theorem If S is a q-Steiner system $S(t, k, n)_a$ then the punctured system S' has $\binom{n-1}{t-1}_{q}/\binom{k-1}{t-1}_{q}$ distinct (k-1)-subspaces which form a q-Steiner system $S(t-1, k-1, n-1)_q$, \widehat{S} . Each t-subspace which is contained in a (k-1)-subspace of \hat{S} is not contained in the k-subspaces of S'. Each t-subspace which is not contained in a (k-1)-subspace of \hat{S} , appears exactly q^t times in the other k-subspaces of S'.

 $S(t, k, n; m)_q$ -Necessary Conditions

System of Equations

Variables - one for each possible p-punctured k-subspaces of $S(t, k, n)_q$.

Equations – one for each possible p-punctured t-subspace of \mathbb{F}_q^n .

$$S(t, k, n; m)_q$$
-Necessary Conditions

Dimension of subspaces to be covered

In a *p*-punctured *q*-Steiner system $S(t,k,n;m)_q$, the *t*-subspaces which should be covered by *k*-subspaces, were punctured and reduced to *s*-subspaces, where $\max\{0, t-p\} \le s \le \min\{t,m\}$.

Dimension of subspaces to cover an *s*-subspace

In a *p*-punctured *q*-Steiner system $S(t, k, n; m)_q$, an *s*-subspaces which was *p*-punctured from a *t*-subspace, is covered by an *r*-subspace, where max $\{s, k - p\} \le r \le \min\{k - t + s, m\}$.

$S(t, k, n; m)_q$ -Necessary Conditions

 $N_{(s,m),(t,n)}$ - the number of *t*-subspaces in \mathbb{F}_q^n which are formed by extending a given s-subspace X of \mathbb{F}_q^m .

$$N_{(s,m),(t,n)} = q^{s(n-m-t+s)} \begin{bmatrix} n-m \\ t-s \end{bmatrix}_q$$

 $C_{(s,t),(r,k)}$ - number of *t*-subspaces in \mathbb{F}_q^n extended from a given *s*-subspace *X* of \mathbb{F}_q^m , contained in an *r*-subspace $Y \supseteq X$ of \mathbb{F}_q^m , which are contained in the *k*-subspace of \mathbb{F}_q^n extended from *Y*.

$$C_{(s,t),(r,k)} = q^{s(k-r-t+s)} \begin{bmatrix} k-r \\ t-s \end{bmatrix}_q$$

$$S(t, k, n; m)_q$$
-Necessary Conditions

 $D_{s,r,m}$ - number of r-subspaces in \mathbb{F}_q^m which contain a given s-subspace X of \mathbb{F}_q^m .

$$D_{s,r,m} = \begin{bmatrix} m-s \\ r-s \end{bmatrix}_q$$

Uniform design - each r-subspace of \mathbb{F}_q^m appears in $S(t, k, n, ; m)_q$ with the same amount.

 $X_{r,m}$ - number of r-subspaces in a uniform $S(t, k, n; m)_q$ for any given r-subspace of \mathbb{F}_q^m .

$$\max\{0, t - p\} \le s \le \min\{t, m\}$$

$$N_{(s,m),(t,n)} = \sum_{max\{s,k-p\}}^{min\{k-t+s,m\}} D_{s,r,m} \cdot C_{(s,t)(r,k)} \cdot X_{r,m}$$

q-STEINER SYSTEMS

Uniform solution

$$X_{0,4} = 1, X_{1,4} = 0, X_{2,4} = q^2(q^2 + 1)$$

$$X_{3,4} = q^4(q^4 - 1), \quad X_{4,4} = q^{12} - q^{11} + q^7$$

q-STEINER SYSTEMS

Punctured q-Steiner Systems

$$S(4, 5, 11; 6)_q$$

Uniform solution
 $X_{0,6} = 1, X_{1,6} = 0, X_{2,6} = q^2(q^2 + 1)$
 $X_{3,6} = q^9 + q^7 - q^4, X_{4,6} = q^{14} - q^9 + q^7$
 $X_{5,6} = (q^{18} + q^{11})(q - 1)$

Punctured q-Steiner Systems

$$S(5, 6, 12; 6)_q$$

Uniform solution
 $X_{0,6} = 1, X_{1,6} = 0, X_{2,6} = q^2(q^4 + q^2 + 1)$
 $X_{3,6} = q^4(q^8 + q^6 + q^5 - 1), X_{4,6} = q^7(q^{11} + q^9 + q^7 - q^6 + 1)$
 $X_{5,6} = q^{11}(q^{13} - q^7 + q^6 - 1), X_{6,6} = q^{16}(q^{14} - q^{13} + q^7 - q^6 + 1)$

Punctured q-Steiner Systems

$$S(3, 4, 2k; k)_q$$

 $k \equiv 2 \text{ or } 4 \pmod{6}$
Uniform solution
 $X_{0,k} = \frac{\binom{k}{3}_q}{\binom{4}{3}_q}, X_{1,k} = 0, X_{2,k} = q^{k-2} \frac{q^{k-1}}{q^{2-1}}$
 $X_{3,k} = q^k(q^k - 1), X_{4,k} = \frac{(q^{3k} - q^{2k+3} + q^{k+3})(q-1)}{q^{k-3} - 1}$

q-Fano Plane

$$S(2, 3, 7; 4)_q$$

 Uniform solution

 $X_{0,4} = 1, X_{1,4} = 0, X_{2,4} = q^2, X_{3,4} = q^4(q-1)$

Column operations

 Exchange of two columns.
 Replace a column with a linear combination which consists of the replaced column with other columns.

Theorem

If S is a q-Steiner system $S(t, k, n)_q$ then any system obtained from S by the same column operations on all its k-subspaces is also a q-Steiner system $S(t, k, n)_q$.

q-Fano Plane Let S be a q-Fano Plane. Z_1 - the unique 3-subspace of \mathbb{F}_q^7 which starts with four all-zero columns. Z_2 - the unique 3-subspace of \mathbb{F}_q^7 which ends with four all-zero columns.

Lemma Without loss of generality we can assume that $Z_1, Z_2 \in S$.

Proof

Using column operations on a 3-subspace whose first three columns have rank 3.

$$S - S(2,3,7;4)_q$$

$$X_{0,4} = 1, X_{1,4} = 0,$$

$$X_{2,4} = q^2, X_{3,4} = q^4(q-1)$$

$$q^2 + q + 1 \quad 1 - \text{subspace}$$
with four zeroes in specified positions.

A - set of 3-subspaces of S which form the $q^2(q^2+1)(q^2+q+1)$ 2-subspaces of $S(2,3,7;4)_q$ obtained by puncturing the last three columns.

 \mathbb{B} - set of 3-subspaces of \mathbb{S} which form the $q^2(q^2+1)(q^2+q+1)$ 2-subspaces of $S(2,3,7;4)_q$ obtained by puncturing the first three columns.

$$|\mathbb{A}| = |\mathbb{B}| = q^2(q^2+1)(q^2+q+1) |\mathbb{A} \cap \mathbb{B}| = (q^2+q+1)^2$$

A - set of 3-subspaces of S which form the $q^2(q^2+1)(q^2+q+1)$ 2-subspaces of $S(2,3,7;4)_q$ obtained by puncturing the last three columns.

 \mathbb{B} - set of 3-subspaces of \mathbb{S} which form the $q^2(q^2+1)(q^2+q+1)$ 2-subspaces of $S(2,3,7;4)_q$ obtained by puncturing the first three columns.

$$|\mathbb{A}| = |\mathbb{B}| = q^2(q^2+1)(q^2+q+1) \quad |\mathbb{A}\cap\mathbb{B}| = (q^2+q+1)^2$$

$$\mathbb{A} \setminus \mathbb{B} = \mathbb{B} \setminus \mathbb{A} = (q^2 + q + 1)(q^4 - q - 1)$$

q-Fano Plane

$$S(2,3,7;5)_q$$

 Start with uniform solution for $S(2,3,7;4)_q$
 $X_{0,4} = 1, X_{1,4} = 0, X_{2,4} = q^2, X_{3,4} = q^4(q-1)$

(30)

$$S - S(2, 3, 7; 4)_q$$

$$X_{0,4} = 1, X_{1,4} = 0, X_{2,4} = q^2, X_{3,4} = q^4(q-1)$$

$$\mathbb{T} - S(2, 3, 7; 5)_q$$

A 3-subspace of \mathbb{F}_q^4 can be extended in q^3 different ways to a 3-subspace of \mathbb{F}_q^5 .

Each 3-subspace of \mathbb{F}_q^5 extended from a 3-subspace of \mathbb{F}_q^4 appears q(q-1) times in \mathbb{T} .

$$S - S(2, 3, 7; 4)_q$$

$$X_{0,4} = 1, X_{1,4} = 0, X_{2,4} = q^2, X_{3,4} = q^4(q-1)$$

$$\mathbb{T} - S(2, 3, 7; 5)_q$$

There are $(q^2 + 1)(q^2 + q + 1)$ 2-subspaces in \mathbb{F}_q^4 , each one appears q^2 times in S.

 $q^2(q^2+1)q^2$ should be extended to 3-subspaces.

 $q^2(q^2+1)(q+1)$ should be extended to 2-subspaces.

$$S - S(2, 3, 7; 4)_q$$

$$X_{0,4} = 1, X_{1,4} = 0, X_{2,4} = q^2, X_{3,4} = q^4(q-1)$$

$$\mathbb{T} - S(2, 3, 7; 5)_q$$

The
$$(q^2 + 1)(q^2 + q + 1)$$
 2-subspaces in \mathbb{F}_q^4
are partitioned into $q^2 + q + 1$ spreads,
each one of size $q^2 + 1$.
Beutelspacher 1974
Baker 1976

Two sets

$$\begin{array}{rrrr} A & - & q^2 & \text{spreads.} \\ B & - & q + 1 & \text{spreads.} \end{array}$$

$$S - S(2, 3, 7; 4)_q$$

$$X_{0,4} = 1, X_{1,4} = 0, X_{2,4} = q^2, X_{3,4} = q^4(q-1)$$

$$\mathbb{T} - S(2, 3, 7; 5)_q$$

$$\begin{array}{rcrcr} A & - & q^2 & \text{spreads.} \\ B & - & q + 1 & \text{spreads.} \end{array}$$

2-subspace from A is extended into a unique 3-subspace in \mathbb{T} .

Each q^2 copies of a 2-subspace from *B* are extended into the q^2 possible 2-subspaces in T.

 $k \equiv 1 \text{ or } 3 \pmod{6}$

p-punctured *q*-Steiner system

$$S(2,3,k; \lfloor \frac{k+1}{3} \rfloor)_q$$
, $p = k - \lfloor \frac{k+1}{3} \rfloor$.

Recursive Construction
$$S(2,3,2k+1;k+1)_q$$
 $k \equiv 1 \text{ or } 3 \pmod{6}$ $\sum_{i=0}^{2} {k+1 \brack i}_q$ equations $\sum_{i=0}^{3} {k+1 \brack i}_q$ variables

S - k-punctured q-Steiner system

$$S(2,3,2k+1;k+1)_q$$
.

$$\mathbb{T} - p - punctured \ q - Steiner \ system$$

$$S(2, 3, 2k + 1; k + 1 + \lfloor \frac{k+1}{3} \rfloor)_q, \ p = k - \lfloor \frac{k+1}{3} \rfloor.$$

 $r = \left\lfloor \frac{k+1}{3} \right\rfloor$ columns should be added to each subspace of S to obtain T.

 $S(2, 3, k; r)_q$ exists.

 $r = \left\lfloor \frac{k+1}{3} \right\rfloor$ columns should be added to each subspace of S to obtain T.

 ${k+1 \brack 3}_q$ distinct 3-subspaces in S, each one appears $q^{k+1}(q-1)$ times in S.

A 3-subspace of \mathbb{F}_q^m has q^3 distinct extension to a 3-subspace in \mathbb{F}_q^{m+1} .

> Each 3-subspace of \mathbb{F}_q^{k+1+r} extended from a 3-subspace of \mathbb{F}_q^{k+1} will appear in \mathbb{T} $q^{k+1-3r}(q-1)$ times.

 $r = \left\lfloor \frac{k+1}{3} \right\rfloor$ columns should be added to each subspace of § to obtain T.

The 0-subspace appears $\binom{\binom{k}{2}}{\binom{3}{2}_{q}}$ times in S.

Recursive step

The $\binom{k}{2}_{q} / \binom{3}{2}_{q}$ subspaces of an $S(2, 3, k; r)_{q}$ are appended to the 0-subspaces of S.

Large set (1-parallelism) of spreads in

$$G_q(k+1,2) - \frac{q^{k-1}}{k-1}$$
 spreads of size $\frac{q^{k+1}-1}{q^2-1}$.

One set -
$$2^{k-r} - 1$$
 spreads.
 $2^r - 1$ sets - each one 2^{k-r} spreads.

q-STEINER SYSTEMS

Open Problems

Find new q-Steiner systems.

Prove the nonexistence of some currently possible q-Steiner systems.

Analyze the 1-punctured
$$q$$
-Steiner system $S(2,3,7;6)_q$.

Find new *p*-punctured *q*-Steiner systems.

