
ON THE STRUCTURE OF 

Q-STEINER SYSTEMS 

Tuvi Etzion 

1 

Computer Science Department 

Istanbul, Turkey, November 4, 2015 

𝒒 -STEINER SYSTEMS  



CODES AND DESIGNS 

2 

Outline 

Punctured 𝒒-Steiner Systems 

The 𝒒-Fano Plane 

𝒒-Steiner Systems 

𝒒 -STEINER SYSTEMS  

Open Problems and Future Research 



CODES AND DESIGNS 

3 

The Grassmannian 

𝑮𝒒(𝒏, 𝒌)   is the set of all 𝒌-dimensional 
subspaces of 𝔽𝒒

𝒏 (the Grassmannian). 

Gaussian coefficients (𝒒-binomial coefficient) 

𝒏
𝒌 𝒒

= 
𝒒𝒏−𝟏 𝒒𝒏−𝟏−𝟏 ⋯(𝒒𝒏−𝒌+𝟏−𝟏)

𝒒𝒌−𝟏 𝒒𝒌−𝟏−𝟏 ⋯(𝒒−𝟏)
 

│𝑮𝒒 𝒏, 𝒌 │ =  𝒏
𝒌 𝒒

  

𝒒 -STEINER SYSTEMS  

𝔽𝒒
𝒏 - vector space of dimension 𝒏 over 𝔽𝒒 (= 𝐆𝐅 𝒒   ). 
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𝒒-Steiner Systems 

A 𝒒-Steiner system 𝑺 𝒕, 𝒌, 𝒏 𝒒 is a pair (𝑵,𝑩), 
where 𝑵 is an 𝒏-dimensional space over 𝔽𝒒 and 𝑩 
is set of 𝒌-dimensional subspaces (called blocks) 
of 𝑵 such that each 𝒕-dimensional subspace of 𝑵 

is contained in exactly one block of 𝑩. 

│𝑺 𝒕, 𝒌, 𝒏 𝒒│ =

𝒏
𝒕 𝒒

𝒌
𝒕 𝒒

  

𝒒 -STEINER SYSTEMS  
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𝒒-Steiner Systems 

│𝑺 𝒕, 𝒌, 𝒏 𝒒│ =

𝒏
𝒕 𝒒

𝒌
𝒕 𝒒

  

      If an 𝑺 𝒕, 𝒌, 𝒏 𝒒 exists then 
    an   𝑺 𝒕 − 𝟏, 𝒌 − 𝟏, 𝒏 − 𝟏 𝒒 exists. 

Theorem 

A necessary condition for the existence of a Steiner 
system 𝑺 𝒕, 𝒌, 𝒏 𝒒 is that for each 𝒊, 𝟎 ≤ 𝒊 ≤ 𝒕 − 𝟏, the 

numbers          
𝒏−𝒊
𝒕−𝒊 𝒒

𝒌−𝒊
𝒕−𝒊 𝒒

    are integers. 

Corollary 

𝒒 -STEINER SYSTEMS  
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Spreads 

   A 𝒒-Steiner system 𝑺 𝟏, 𝒌, 𝒏 𝒒 
exists if and only if 𝒌 divides 𝒏.  

Theorem 

Proof 𝒏 = 𝒔𝒌 𝜶 primitive in 𝑮𝑭(𝒒𝒏) 

𝒓 =
𝒒𝒏 − 𝟏 

𝒒𝒌 − 𝟏
 

𝜶𝒓 is primitive in the 
subfield 𝑮𝑭(𝒒𝒌) of 𝑮𝑭(𝒒𝒏) 

{𝟎, 𝜶𝒊, 𝜶𝒊+𝒓, 𝜶𝒊+𝟐𝒓, … , 𝜶𝒊+ 𝟐𝒌−𝟐 𝒓}, 𝟎 ≤ 𝒊 ≤ 𝒓 − 𝟏, 
are closed under addition 

 in 𝑮𝑭(𝒒𝒏) ⇒ subspaces ⇒ 𝑺 𝟏, 𝒌, 𝒏 𝒒 

spread 

𝒒 -STEINER SYSTEMS  
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𝑺 𝟐, 𝟑, 𝟏𝟑 𝟐 
𝜶 primitive in 𝑮𝑭(𝟐𝟏𝟑) 

𝑽 = {𝟎, 𝜶𝒊𝟏 , 𝜶𝒊𝟐 , 𝜶𝒊𝟑 , 𝜶𝒊𝟒 , 𝜶𝒊𝟓 , 𝜶𝒊𝟔 , 𝜶𝒊𝟕} 

𝜶𝑽 = {𝟎, 𝜶𝒊𝟏+𝟏, 𝜶𝒊𝟐+𝟏, 𝜶𝒊𝟑+𝟏, 𝜶𝒊𝟒+𝟏, 𝜶𝒊𝟓+𝟏, 𝜶𝒊𝟔+𝟏, 𝜶𝒊𝟕+𝟏} 

𝑭(𝑽) = {𝟎, 𝜶𝟐⋅𝒊𝟏 , 𝜶𝟐⋅𝒊𝟐 , 𝜶𝟐⋅𝒊𝟑 , 𝜶𝟐⋅𝒊𝟒 , 𝜶𝟐⋅𝒊𝟓 , 𝜶𝟐⋅𝒊𝟔 , 𝜶𝟐⋅𝒊𝟕} 

cyclic shift 

Frobenius map 

normalizer of Singer subgroup automoprphism 

 + 

= 

1 597 245 
 3−dimensional subspaces  

15 representatives 

Braun, E., Östergård, Vardy, Wassermann, 2013 
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𝒒-Steiner Systems 

A 𝒒-packing system 𝑷 𝒕, 𝒌, 𝒏 𝒒 is a pair (𝑵,𝑩), 
where 𝑵 is an 𝒏-dimensional space over 𝔽𝒒 and 𝑩 
is set of 𝒌-dimensional subspaces (called blocks) 
of 𝑵 such that each 𝒕-dimensional subspace of 𝑵 

is contained in at most one block of 𝑩. 

│𝑷 𝒕, 𝒌, 𝒏 𝒒│ ≤

𝒏
𝒕 𝒒

𝒌
𝒕 𝒒

  

𝒒 -STEINER SYSTEMS  
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Asymptotic Behavior 

If 𝒒, 𝒌, and 𝒕 are fixed integers with 𝟎 ≤ 𝒕 ≤ 𝒌, 
𝒒 a prime power, then 

𝑷(𝒕, 𝒌, 𝒏) ∼

𝒏
𝒕 𝒒

𝒌
𝒕 𝒒

  

as 𝒏 →  ∞. 

Theorem 

𝑨(𝒏) ∼ 𝑩(𝒏) if 𝐥𝐢𝐦 𝑨 𝒏
𝑩 𝒏 = 𝟏 as 𝒏 →  ∞. 

Blackburn, E., 2012 

𝒒 -STEINER SYSTEMS  



CODES AND DESIGNS 

10 

Punctured 𝒒-Steiner Systems 

For a subspace 𝑿 ∈ 𝑮𝒒(𝒏, 𝒌) the punctured 
subspace 𝑿′ by the 𝒊th coordinate of 𝑿  is 
the subspace obtained by deleting the 𝒊th 
coordinate from all the vectors of 𝑿.  

𝒒 -STEINER SYSTEMS  

Given an 𝒏 ×𝒎 array 𝑨, the punctured array 𝑨′ is 
an 𝒏 × (𝒎 − 𝟏) array obtained from 𝑨 by deleting 
one of the columns of 𝑨. 

A punctured 𝒌–subspace is either a 
𝒌-subspace or a (𝒌 − 𝟏)-subspace. 

Lemma 
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Punctured 𝒒-Steiner Systems 

𝒒 -STEINER SYSTEMS  

A 𝒌-subspace 𝑿 of 𝔽𝒒
𝒏 is represented 

by a 𝒒𝒌 − 𝟏 × 𝒏 matrix which contains 
the 𝒒𝒌 − 𝟏 nonzero vectors of 𝑿. Each 
nonzero vector of 𝑿 is a row in this 
matrix. 

Representation of a subspace 
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Punctured 𝒒-Steiner Systems 

𝒒 -STEINER SYSTEMS  

A punctured 𝒌–subspace is either a 
𝒌-subspace or a (𝒌 − 𝟏)-subspace. 

If the punctured 𝒌-subspace 𝑿 contains 
the unity vector with a one in the 𝒊th 
coordinate then 𝑿′ is a (𝒌 − 𝟏)-subspace. 
Otherwise, 𝑿′ is a 𝒌-subspace. 

Lemma 

For a set of subspaces 𝕊, the punctured 
set 𝕊′ is defined as 𝕊′ = { 𝑿′: 𝑿 ∈ 𝕊}. 

Unless otherwise said, the last 
coordinate is the punctured one. 
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Punctured 𝒒-Steiner Systems 

𝒒 -STEINER SYSTEMS  

     A 𝒕-subspace 𝑿 of 𝔽𝒒
𝒎 is extended to a 

𝒕′-subspace 𝒀 of 𝔽𝒒
𝒎′

, where 𝒕′ ≥ 𝒕, 𝒎′ > 𝒎, 
𝒎′ −𝒎 ≥ 𝒕′ − 𝒕 if 𝑿 is the subspace obtained 
from 𝒀 by puncturing 𝒎′ −𝒎 times. 

      If 𝑿 is a 𝒕-subspace of 𝔽𝒒
𝒎 then it can 

be extended in exactly 𝒒𝒕 distinct ways to a 
𝒕-subspace of 𝔽𝒒

𝒎+𝟏. 

Lemma 

          If 𝑿 is a 𝒕-subspace of 𝔽𝒒
𝒎 then it can be 

extended in exactly one way to a (𝒕 + 𝟏)-subspace 
of 𝔽𝒒

𝒎+𝟏. 

Lemma 
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Punctured 𝒒-Steiner Systems 

𝒒 -STEINER SYSTEMS  

A system 𝕊 of subspaces of 𝔽𝒒
𝒎, in which 

each 𝒕-subspace of 𝔽𝒒
𝒏 can be obtained 

exactly once by extending 𝒑 times all the 
subspaces of 𝕊. This is done in parallel 

for all identical subspaces of 𝕊. 

𝒑–punctured 𝒒-Steiner system 

𝑺(𝒕, 𝒌, 𝒏;𝒎) , 𝒎 = 𝒏− 𝒑  
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Punctured 𝒒-Steiner Systems 

𝒒 -STEINER SYSTEMS  

           If 𝕊 is a 𝒒-Steiner system 𝑺 𝒕, 𝒌, 𝒏 𝒒 then 

the punctured system 𝕊′ has 
𝒏−𝟏
𝒕−𝟏 𝒒

𝒌−𝟏
𝒕−𝟏 𝒒

  distinct 

(𝒌 − 𝟏)-subspaces which form a 𝒒-Steiner system    
𝑺 𝒕 − 𝟏, 𝒌 − 𝟏, 𝒏 − 𝟏 𝒒, 𝕊 . Each 𝒕-subspace which is 
contained in a (𝒌 − 𝟏)-subspace of 𝕊  is not contained 
in the 𝒌-subspaces of 𝕊′. Each 𝒕-subspace which is 
not contained in a (𝒌 − 𝟏)-subspace of 𝕊 , appears 
exactly 𝒒𝒕 times in the other 𝒌-subspaces of 𝕊′. 

Theorem 
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𝑺 𝒕, 𝒌, 𝒏;𝒎 𝒒-Necessary Conditions 

𝒒 -STEINER SYSTEMS  

Variables – one for each possible      
𝒑–punctured 𝒌–subspaces of 𝑺 𝒕, 𝒌, 𝒏 𝒒. 

Equations – one for each possible 
𝒑–punctured 𝒕-subspace of 𝔽𝒒

𝒏. 

System of Equations 
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𝑺 𝒕, 𝒌, 𝒏;𝒎 𝒒-Necessary Conditions 

𝒒 -STEINER SYSTEMS  

In a 𝒑-punctured 𝒒-Steiner system 𝑺 𝒕, 𝒌, 𝒏;𝒎 𝒒, 
the 𝒕-subspaces which should be covered by    
𝒌-subspaces, were punctured and reduced to   
𝒔-subspaces, where 𝐦𝐚𝐱{𝟎, 𝒕 − 𝒑} ≤ 𝒔 ≤ 𝐦𝐢𝐧{𝒕,𝒎}. 

Dimension of subspaces to be covered 

Dimension of subspaces to cover an 𝒔-subspace 

In a 𝒑-punctured 𝒒-Steiner system 𝑺 𝒕, 𝒌, 𝒏;𝒎 𝒒, 
an 𝒔-subspaces which was 𝒑 –punctured from a    
𝒕-subspace, is covered by an 𝒓-subspace, where 
𝐦𝐚𝐱 {𝒔, 𝒌 − 𝒑} ≤ 𝒓 ≤ 𝐦𝐢𝐧{𝒌 − 𝒕 + 𝒔,𝒎}. 
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𝑺 𝒕, 𝒌, 𝒏;𝒎 𝒒-Necessary Conditions 

𝒒 -STEINER SYSTEMS  

𝑵 𝒔,𝒎 ,(𝒕,𝒏) - the number of 𝒕-subspaces in 𝔽𝒒
𝒏  

which are formed by extending a given      
𝒔-subspace 𝑿 of 𝔽𝒒

𝒎. 

𝑵 𝒔,𝒎 ,(𝒕,𝒏) = 𝒒𝒔(𝒏−𝒎−𝒕+𝒔)
𝒏 −𝒎

𝒕 − 𝒔 𝒒
 

𝑪 𝒔,𝒕 ,(𝒓,𝒌) - number of 𝒕-subspaces in 𝔽𝒒
𝒏 extended 

from a given 𝒔-subspace 𝑿 of 𝔽𝒒
𝒎, contained in an 

𝒓–subspace 𝒀 ⊇ 𝑿 of 𝔽𝒒
𝒎, which are contained in 

the 𝒌-subspace of 𝔽𝒒
𝒏 extended from 𝒀. 

𝑪 𝒔,𝒕 ,(𝒓,𝒌) = 𝒒𝒔(𝒌−𝒓−𝒕+𝒔)
𝒌 − 𝒓

𝒕 − 𝒔
𝒒
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𝑺 𝒕, 𝒌, 𝒏;𝒎 𝒒-Necessary Conditions 

𝒒 -STEINER SYSTEMS  

𝑫𝒔,𝒓,𝒎 - number of 𝒓-subspaces in 𝔽𝒒
𝒎 which 

contain a given 𝒔-subspace 𝑿 of 𝔽𝒒
𝒎. 

𝑫𝒔,𝒓,𝒎 =
𝒎− 𝒔

𝒓 − 𝒔 𝒒
 

𝑵 𝒔,𝒎 ,(𝒕,𝒏) = 𝑫𝒔,𝒓,𝒎
𝒎𝒊𝒏{𝒌−𝒕+𝒔,𝒎}
𝒎𝒂𝒙{𝒔,𝒌−𝒑} ⋅ 𝑪 𝒔,𝒕 𝒓,𝒌 ⋅ 𝑿𝒓,𝒎 

𝑿𝒓,𝒎 - number of 𝒓-subspaces in a uniform 
𝑺 𝒕, 𝒌, 𝒏;𝒎 𝒒 for any given 𝒓-subspace of 𝔽𝒒

𝒎. 

Uniform design – each 𝒓-subspace 
of 𝔽𝒒

𝒎 appears in 𝑺 𝒕, 𝒌, 𝒏, ;𝒎 𝒒 
with the same amount. 

𝐦𝐚𝐱{𝟎, 𝒕 − 𝒑} ≤ 𝒔 ≤ 𝐦𝐢𝐧{𝒕,𝒎} 
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Punctured 𝒒-Steiner Systems 

𝒒 -STEINER SYSTEMS  

𝑺 𝟑, 𝟒, 𝟖; 𝟒 𝒒 

Uniform solution 

𝑿𝟎,𝟒 = 𝟏, 𝑿𝟏,𝟒 = 𝟎,    𝑿𝟐,𝟒 = 𝒒𝟐(𝒒𝟐 + 𝟏) 

𝑿𝟑,𝟒 = 𝒒𝟒(𝒒𝟒 − 𝟏),    𝑿𝟒,𝟒 = 𝒒𝟏𝟐 − 𝒒𝟏𝟏 + 𝒒𝟕 
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Punctured 𝒒-Steiner Systems 

𝒒 -STEINER SYSTEMS  

𝑺 𝟒, 𝟓, 𝟏𝟏; 𝟔 𝒒 

Uniform solution 

𝑿𝟎,𝟔 = 𝟏, 𝑿𝟏,𝟔 = 𝟎,    𝑿𝟐,𝟔 = 𝒒𝟐(𝒒𝟐 + 𝟏) 

𝑿𝟑,𝟔 = 𝒒𝟗 + 𝒒𝟕 − 𝒒𝟒,    𝑿𝟒,𝟔 = 𝒒𝟏𝟒 − 𝒒𝟗 + 𝒒𝟕 

𝑿𝟓,𝟔 = (𝒒𝟏𝟖 + 𝒒𝟏𝟏)(𝒒 − 𝟏) 



CODES AND DESIGNS 

22 

Punctured 𝒒-Steiner Systems 

𝒒 -STEINER SYSTEMS  

𝑺 𝟓, 𝟔, 𝟏𝟐; 𝟔 𝒒 

Uniform solution 

𝑿𝟎,𝟔 = 𝟏, 𝑿𝟏,𝟔 = 𝟎,    𝑿𝟐,𝟔 = 𝒒𝟐(𝒒𝟒 + 𝒒𝟐 + 𝟏) 

𝑿𝟑,𝟔 = 𝒒𝟒(𝒒𝟖 + 𝒒𝟔 + 𝒒𝟓 − 𝟏) ,  𝑿𝟒,𝟔 = 𝒒𝟕(𝒒𝟏𝟏 + 𝒒𝟗 + 𝒒𝟕 − 𝒒𝟔 + 𝟏) 

𝑿𝟓,𝟔 = 𝒒𝟏𝟏(𝒒𝟏𝟑 − 𝒒𝟕 + 𝒒𝟔 − 𝟏) ,  𝑿𝟔,𝟔 = 𝒒𝟏𝟔(𝒒𝟏𝟒 − 𝒒𝟏𝟑 + 𝒒𝟕 − 𝒒𝟔 + 𝟏) 
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Punctured 𝒒-Steiner Systems 

𝒒 -STEINER SYSTEMS  

𝑺 𝟑, 𝟒, 𝟐𝒌; 𝒌 𝒒   

𝒌 ≡ 𝟐 𝐨𝐫 𝟒 (𝐦𝐨𝐝 𝟔) 

Uniform solution 

𝑿𝟎,𝒌 =

𝒌
𝟑 𝒒

𝟒
𝟑 𝒒

 ,  𝑿𝟏,𝒌 = 𝟎,    𝑿𝟐,𝒌 = 𝒒𝒌−𝟐
𝒒𝒌−𝟏

𝒒𝟐−𝟏
 

𝑿𝟑,𝒌 = 𝒒𝒌(𝒒𝒌 − 𝟏),    𝑿𝟒,𝒌 =
(𝒒𝟑𝒌−𝒒𝟐𝒌+𝟑+𝒒𝒌+𝟑)(𝒒−𝟏)

𝒒𝒌−𝟑−𝟏
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𝒒-Fano Plane 

𝒒 -STEINER SYSTEMS  

Fano Plane 

Steiner system 𝑺(𝟐, 𝟑, 𝟕) 

What about 𝑺 𝟐, 𝟑, 𝟕 𝒒? 

𝑺 𝟐, 𝟑, 𝟕 𝒒 is a 𝒒-Fano plane 
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𝒒-Fano Plane 

𝒒 -STEINER SYSTEMS  

Uniform solution 

𝑿𝟎,𝟒 = 𝟏, 𝑿𝟏,𝟒 = 𝟎, 𝑿𝟐,𝟒 = 𝒒𝟐, 𝑿𝟑,𝟒 = 𝒒𝟒(𝒒 − 𝟏)   

𝑺 𝟐, 𝟑, 𝟕; 𝟒 𝒒 
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𝒒-Fano Plane 

𝒒 -STEINER SYSTEMS  

If 𝕊 is a 𝒒-Steiner system 𝑺 𝒕, 𝒌, 𝒏 𝒒 then 
any system obtained from 𝕊 by the same 
column operations on all its 𝒌-subspaces is 
also a 𝒒-Steiner system 𝑺 𝒕, 𝒌, 𝒏 𝒒. 

Theorem 

Column operations 

1.Exchange of two columns. 
2.Replace a column with a linear 

combination which consists of the 
replaced column with other columns. 
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𝒒-Fano Plane 

𝒒 -STEINER SYSTEMS  

𝒁𝟏 - the unique 3-subspace of 𝔽𝒒
𝟕 which 

starts with four all-zero columns. 
𝒁𝟐 - the unique 3-subspace of 𝔽𝒒

𝟕 which 
ends with four all-zero columns. 

        Without loss of generality 
we can assume that 𝒁𝟏, 𝒁𝟐 ∈ 𝕊. 

Lemma 

Let 𝕊 be a 𝒒-Fano Plane. 

Using column operations on a 3-subspace 
whose first three columns have rank 3. 

Proof 
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𝒒-Fano Plane 

𝒒 -STEINER SYSTEMS  

𝑿𝟎,𝟒 = 𝟏, 𝑿𝟏,𝟒 = 𝟎 , 

𝑿𝟐,𝟒 = 𝒒𝟐, 𝑿𝟑,𝟒 = 𝒒𝟒(𝒒 − 𝟏)   

𝔸 - set of 3-subspaces of 𝕊 which form the 
𝒒𝟐(𝒒𝟐 + 𝟏)(𝒒𝟐 + 𝒒 + 𝟏) 2-subspaces of 𝑺 𝟐, 𝟑, 𝟕; 𝟒 𝒒 
obtained by puncturing the last three columns. 

𝔹 - set of 3-subspaces of 𝕊 which form the 
𝒒𝟐(𝒒𝟐 + 𝟏)(𝒒𝟐 + 𝒒 + 𝟏) 2-subspaces of 𝑺 𝟐, 𝟑, 𝟕; 𝟒 𝒒 
obtained by puncturing the first three columns. 

   │𝔸│ = │𝔹│ = 𝒒𝟐(𝒒𝟐 + 𝟏)(𝒒𝟐 + 𝒒 + 𝟏)    │𝔸 ∩ 𝔹│ = 𝒒𝟐 + 𝒒 + 𝟏
𝟐
 

𝒒𝟐 + 𝒒 + 𝟏 𝟏-subspaces 
with four zeroes in 
specified positions. 

𝕊 −  𝑺 𝟐, 𝟑, 𝟕; 𝟒 𝒒 
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𝒒-Fano Plane 

𝒒 -STEINER SYSTEMS  

𝔸 - set of 3-subspaces of 𝕊 which form the 
𝒒𝟐(𝒒𝟐 + 𝟏)(𝒒𝟐 + 𝒒 + 𝟏) 2-subspaces of 𝑺 𝟐, 𝟑, 𝟕; 𝟒 𝒒 
obtained by puncturing the last three columns. 

𝔹 - set of 3-subspaces of 𝕊 which form the 
𝒒𝟐(𝒒𝟐 + 𝟏)(𝒒𝟐 + 𝒒 + 𝟏) 2-subspaces of 𝑺 𝟐, 𝟑, 𝟕; 𝟒 𝒒 
obtained by puncturing the first three columns. 

   │𝔸│ = │𝔹│ = 𝒒𝟐(𝒒𝟐 + 𝟏)(𝒒𝟐 + 𝒒 + 𝟏)    │𝔸 ∩ 𝔹│ = 𝒒𝟐 + 𝒒 + 𝟏
𝟐
 

   │𝔸 ∖ 𝔹│ = │𝔹 ∖ 𝔸│ = (𝒒𝟐 + 𝒒 + 𝟏)(𝒒𝟒 − 𝒒 − 𝟏) 
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𝒒-Fano Plane 

𝒒 -STEINER SYSTEMS  

Start with uniform solution for 𝑺 𝟐, 𝟑, 𝟕; 𝟒 𝒒 

𝑿𝟎,𝟒 = 𝟏,  𝑿𝟏,𝟒 = 𝟎,  𝑿𝟐,𝟒 = 𝒒𝟐,  𝑿𝟑,𝟒 = 𝒒𝟒(𝒒 − 𝟏)   

𝑺 𝟐, 𝟑, 𝟕; 𝟓 𝒒 
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𝒒-Fano Plane 

𝒒 -STEINER SYSTEMS  

A 𝟑-subspace of 𝔽𝒒
𝟒 can be extended in 𝒒𝟑 

different ways  to a 3-subspace of 𝔽𝒒
𝟓. 

Each 𝟑-subspace of 𝔽𝒒
𝟓 extended from a 𝟑-subspace 

of 𝔽𝒒
𝟒 appears 𝒒(𝒒 − 𝟏) times in 𝕋. 

𝕋    −      𝑺 𝟐, 𝟑, 𝟕; 𝟓 𝒒 

𝕊 −  𝑺 𝟐, 𝟑, 𝟕; 𝟒 𝒒 𝑿𝟎,𝟒 = 𝟏,  𝑿𝟏,𝟒= 𝟎 ,  𝑿𝟐,𝟒 = 𝒒𝟐,  𝑿𝟑,𝟒 = 𝒒𝟒(𝒒 − 𝟏)   
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𝒒-Fano Plane 

𝒒 -STEINER SYSTEMS  

There are  (𝒒𝟐 + 𝟏)(𝒒𝟐 + 𝒒 + 𝟏)  2-subspaces 
in 𝔽𝒒

𝟒, each one appears 𝒒𝟐 times in 𝕊. 

𝑿𝟎,𝟒 = 𝟏, 𝑿𝟏,𝟒 = 𝟎 , 𝑿𝟐,𝟒 = 𝒒𝟐, 𝑿𝟑,𝟒 = 𝒒𝟒(𝒒 − 𝟏)   𝕊 −  𝑺 𝟐, 𝟑, 𝟕; 𝟒 𝒒 

𝕋    −      𝑺 𝟐, 𝟑, 𝟕; 𝟓 𝒒 

𝒒𝟐 𝒒𝟐 + 𝟏 𝒒𝟐 should be extended to 𝟑-subspaces. 

𝒒𝟐 𝒒𝟐 + 𝟏 (𝒒 + 𝟏) should be extended to 𝟐-subspaces. 
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𝒒-Fano Plane 

𝒒 -STEINER SYSTEMS  

The (𝒒𝟐 + 𝟏)(𝒒𝟐 + 𝒒 + 𝟏)  2-subspaces in 𝔽𝒒
𝟒 

are partitioned into 𝒒𝟐 + 𝒒 + 𝟏 spreads, 
each one of size 𝒒𝟐 + 𝟏. 

𝑿𝟎,𝟒 = 𝟏, 𝑿𝟏,𝟒 = 𝟎, 𝑿𝟐,𝟒 = 𝒒𝟐, 𝑿𝟑,𝟒 = 𝒒𝟒(𝒒 − 𝟏)   𝕊 −  𝑺 𝟐, 𝟑, 𝟕; 𝟒 𝒒 

𝕋    −      𝑺 𝟐, 𝟑, 𝟕; 𝟓 𝒒 

Beutelspacher 1974 

Baker 1976 

Two sets 
𝑨  -  𝒒𝟐   spreads. 
𝑩  - 𝒒 + 𝟏 spreads. 
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𝒒-Fano Plane 

𝒒 -STEINER SYSTEMS  

𝑿𝟎,𝟒 = 𝟏, 𝑿𝟏,𝟒 = 𝟎, 𝑿𝟐,𝟒 = 𝒒𝟐, 𝑿𝟑,𝟒 = 𝒒𝟒(𝒒 − 𝟏)   𝕊 −  𝑺 𝟐, 𝟑, 𝟕; 𝟒 𝒒 

𝕋    −      𝑺 𝟐, 𝟑, 𝟕; 𝟓 𝒒 

Two sets 
𝑨  -  𝒒𝟐   spreads. 
𝑩  - 𝒒 + 𝟏 spreads. 

2-subspace from 𝑨 is extended 
into a unique 3-subspace in 𝕋. 

Each  𝒒𝟐  copies of a 2-subspace from 𝑩 are 
extended into the 𝒒𝟐 possible 2-subspaces in 𝕋.   
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Recursive Construction 

𝒒 -STEINER SYSTEMS  

𝒌 ≡ 𝟏 𝐨𝐫 𝟑 (𝐦𝐨𝐝 𝟔) 

𝒑-punctured 𝒒-Steiner system                       
𝑺 𝟐, 𝟑, 𝒌; 𝒌+𝟏

𝟑 𝒒
, 𝒑 = 𝒌 − 𝒌+𝟏

𝟑
 .  . 
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Recursive Construction 

𝒒 -STEINER SYSTEMS  

𝒌 ≡ 𝟏 𝐨𝐫 𝟑 (𝐦𝐨𝐝 𝟔) 

𝑺 𝟐, 𝟑, 𝟐𝒌 + 𝟏; 𝒌 + 𝟏 𝒒 

 𝒌+𝟏
𝒊 𝒒

𝟐
𝒊=𝟎    equations  𝒌+𝟏

𝒊 𝒒

𝟑
𝒊=𝟎    variables 
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Recursive Construction 

𝒒 -STEINER SYSTEMS  

𝒌 ≡ 𝟏 𝐨𝐫 𝟑 (𝐦𝐨𝐝 𝟔) 

𝑺 𝟐, 𝟑, 𝟐𝒌 + 𝟏; 𝒌 + 𝟏 𝒒 

Uniform solution 

𝑿𝟎,𝒌+𝟏 =

𝒌
𝟐 𝒒

𝟑
𝟐 𝒒

  

𝑿𝟏,𝒌+𝟏 = 𝟎, 𝑿𝟐,𝒌+𝟏 = 𝒒𝒌−𝟏, 𝑿𝟑,𝒌+𝟏 = 𝒒𝒌+𝟏(𝒒 − 𝟏)   
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Recursive Construction 

𝒒 -STEINER SYSTEMS  

 𝕊 - 𝒌-punctured 𝒒-Steiner system                 
𝑺 𝟐, 𝟑, 𝟐𝒌 + 𝟏; 𝒌 + 𝟏 𝒒.. 

 𝕋 - 𝒑-punctured 𝒒-Steiner system                 
𝑺 𝟐, 𝟑, 𝟐𝒌 + 𝟏; 𝒌 + 𝟏 + 𝒌+𝟏

𝟑 𝒒
,. 𝒑 = 𝒌 − 𝒌+𝟏

𝟑
.  

𝒓 = 𝒌+𝟏

𝟑
    columns should be added 

to each subspace of 𝕊 to obtain 𝕋. 

𝑺 𝟐, 𝟑, 𝒌; 𝒓 𝒒 exists. 
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Recursive Construction 

𝒒 -STEINER SYSTEMS  

𝒌+𝟏
𝟑 𝒒

 distinct 𝟑–subspaces in 𝕊, each 

one appears 𝒒𝒌+𝟏(𝒒 − 𝟏) times in 𝕊. 

𝒓 = 𝒌+𝟏

𝟑
    columns should be added 

to each subspace of 𝕊 to obtain 𝕋. 

A 3-subspace of 𝔽𝒒
𝒎 has 𝒒𝟑 distinct 

extension to a 3-subspace in 𝔽𝒒
𝒎+𝟏. 

Each 3-subspace of 𝔽𝒒
𝒌+𝟏+𝒓 extended 

from a 3-subspace of 𝔽𝒒
𝒌+𝟏 will appear 

in 𝕋  𝒒𝒌+𝟏−𝟑𝒓(𝒒 − 𝟏) times. 
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Recursive Construction 

𝒒 -STEINER SYSTEMS  

The 𝟎–subspace appears 
𝒌
𝟐 𝒒

𝟑
𝟐 𝒒

  times in 𝕊. 

𝒓 = 𝒌+𝟏

𝟑
    columns should be added 

to each subspace of 𝕊 to obtain 𝕋. 

The 
𝒌
𝟐 𝒒

𝟑
𝟐 𝒒

  subspaces of an 𝑺 𝟐, 𝟑, 𝒌; 𝒓 𝒒   

are appended to the 0-subspaces of 𝕊. 

Recursive step 
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Recursive Construction 

𝒒 -STEINER SYSTEMS  

Large set (1-parallelism) of spreads in   

𝑮𝒒(𝒌 + 𝟏, 𝟐) - 
𝒒𝒌−𝟏

𝒌−𝟏
 spreads of size 

𝒒𝒌+𝟏−𝟏

𝒒𝟐−𝟏
. 

𝒒 = 𝟐 𝟐𝒓 sets 

One set -  𝟐𝒌−𝒓 − 𝟏 spreads. 
𝟐𝒓 − 𝟏 sets – each one 𝟐𝒌−𝒓 spreads. 
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Recursive Construction 

𝒒 -STEINER SYSTEMS  

𝒒 = 𝟐 𝟐𝒓 sets 

One set -  𝟐𝒌−𝒓 − 𝟏 spreads. 

𝟐𝒓 − 𝟏 sets – each one 𝟐𝒌−𝒓 spreads. 

𝟐-subspaces  ⇒  𝟐-subspaces 

𝟐-subspaces  ⇒  𝟑-subspaces 
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Open Problems 

Find new 𝒒-Steiner systems. 

Prove the nonexistence of some 
currently possible 𝒒-Steiner systems. 

Find new 𝒑-punctured 
𝒒-Steiner systems. 

𝒒 -STEINER SYSTEMS  

Analyze the 𝟏-punctured      
𝒒-Steiner system 𝑺 𝟐, 𝟑, 𝟕; 𝟔 𝒒.  



44 𝒒 -STEINER SYSTEMS  


