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Tutorial Outline

1) Description and performance evaluation

o Random Linear Network Coding (RLNC) for broadcasting

o ‘Straightforward’ vs. systematic RLNC
o RLNC for layered services

o Sparse RLNC

2) Resource allocation for network coded systems
o Basic concepts of LTE/LTE-A and ultra-reliable layered services
o Optimizing with respect to the service provider or the users

o The use of sparse RLNC in LTE/LTE-A systems

3) Concluding remarks
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Straightforward and Systematic NC

— Straightforward Network Coding —

Source packets

Received coded packets

Decoding matrix (example)

O 1 1 00 10
I 100 1 0 1
G: 0O 01 01 0O
1 001 1 01
0O 000 1120




Straightforward and Systematic NC

— Straightforward Network Coding

Source packets

Received coded packets

Decoding matrix (example)

O 1 1 00 10
I 100 1 0 1
G: 0O 01 01 0O
1 001 1 01
0O 000 1120

Systematic Network Coding =

Source packets

Received systematic & coded packets

Decoding matrix (example)

0O 1 00 0 OO
0O 01 00 0O
G: 0 000 O0OT1FDPO0
I 1101 00
I 1.0 0 0 1 1




Decoding probability of straightforward NC

* The probability of a receiver decoding all of the K source packets, given
that » > K coded packets have been successfully received, is the
probability of the decoding matrix G being full rank.



Decoding probability of straightforward NC

* The probability of a receiver decoding all of the K source packets, given
that » > K coded packets have been successfully received, is the
probability of the decoding matrix G being full rank.

Decoding matrix:

>
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000000060000 0900
000000060000 0900
000000060000 0900
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Decoding probability of straightforward NC

* The probability of a receiver decoding all of the K source packets, given
that » > K coded packets have been successfully received, is the
probability of the decoding matrix G being full rank.

Decoding matrix: _
Random element from GF(g), i.e.,

element e isinset{0, 1, ..., g-1}
and Pr{¢}=1/qg

>
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0000600000000 00
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0000600000000 00
000060000000 000
00000000000 000
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Decoding probability of straightforward NC

* The probability of a receiver decoding all of the K source packets, given
that » > K coded packets have been successfully received, is the
probability of the decoding matrix G being full rank.

Decoding matrix:
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Decoding probability of straightforward NC

* The probability of a receiver decoding all of the K source packets, given
that » > K coded packets have been successfully received, is the
probability of the decoding matrix G being full rank.

Decoding matrix:
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Decoding probability of straightforward NC

* The probability of a receiver decoding all of the K source packets, given
that » > K coded packets have been successfully received, is the
probability of the decoding matrix G being full rank.

Decoding matrix:

: A # Lin. Ind. Vector in col. 1:
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Decoding probability of straightforward NC

* The probability of a receiver decoding all of the K source packets, given
that » > K coded packets have been successfully received, is the
probability of the decoding matrix G being full rank.

Decoding matrix:

. A # Lin. Ind. Vector in col. 1: (qr — 1)
[ J

: lgnore the all-zero vector and choose
¢ col. 1 from the remaining vectors of
: F>K the r-dimensional space.
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Decoding probability of straightforward NC

* The probability of a receiver decoding all of the K source packets, given
that » > K coded packets have been successfully received, is the
probability of the decoding matrix G being full rank.

Decoding matrix:

°° A # Lin. Ind. Vector in col. 1: (qr — 1)
(BN ]

[ BN )

Y . . . r _

. o # Lin. Ind. Vector in col. 2: (q q)
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: : subspace generated by col. 1 and
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Decoding probability of straightforward NC

* The probability of a receiver decoding all of the K source packets, given
that » > K coded packets have been successfully received, is the
probability of the decoding matrix G being full rank.

Decoding matrix:

©ooo A # Lin. Ind. Vector in col. 1: (qr — 1)
® 060

® 00

o0 0 : ; . r__
00 # Lin. Ind. Vector in col. 2: (q q)
o 060

seoe Sk # Lin. Ind. Vector in col. 3: (qr — qz)
o 060

e 00

XX lgnore the 2-dimensional subspace

: : : generated by col. 1 and col. 2 and
eooeo choose col. 3 from the remaining

©oo o v vectors of the r-dimensional space.
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Decoding probability of straightforward NC

* The probability of a receiver decoding all of the K source packets, given
that » > K coded packets have been successfully received, is the
probability of the decoding matrix G being full rank.

Decoding matrix:
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Decoding probability of straightforward NC

* The probability of a receiver decoding all of the K source packets, given
that » > K coded packets have been successfully received, is the
probability of the decoding matrix G being full rank.

Decoding matrix:

Sttt eeeeeees A The number of full-rank
00000000000 r X K matrices is:
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00000000000 -
ETEEEEEEKEEXEX r_ At
e00000000000 H(q q)
00000000000 r>K =0
00000000000

00000000000

00000000000

00000000000

00000000000

00000000000

00000000000 V

<€ >

=~



Decoding probability of straightforward NC

* The probability of a receiver decoding all of the K source packets, given
that » > K coded packets have been successfully received, is the
probability of the decoding matrix G being full rank.

Decoding matrix: Decoding probability:
00000000000 A K-1/ , ;
00000000 OCOCGES H'—O(q_q)
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Decoding probability of straightforward NC

* The probability of a receiver decoding all of the K source packets, given
that » > K coded packets have been successfully received, is the
probability of the decoding matrix G being full rank.

Decoding matrix: Decoding probability:
00000000000 A K-1/ ;

A EEEEEEEEREEXKX) . \qg —q
00000000000 WK(r):Hl_O(rK )
cececcccscse q
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Decoding probability of systematic NC

* For N> K transmitted packets, the probability of a receiver decoding all of
the K source packets, given that £ < < /V packets have been successfully
received can be computed as follows:



Decoding probability of systematic NC

* For N> K transmitted packets, the probability of a receiver decoding all of
the K source packets, given that £ < < /V packets have been successfully
received can be computed as follows:

Decoding matrix:

1 0 0 0 0 --- 0 A
O .0 00 -0

00 100 - 0 .
e o o o o N

e e o o o ... o \ 4
<€ >




Decoding probability of systematic NC

* For N> K transmitted packets, the probability of a receiver decoding all of
the K source packets, given that £ < < /N packets have been successfully

received can be computed as follows:

Decoding matrix:
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Decoding probability of systematic NC

For N > K transmitted packets, the probability of a receiver decoding all of
the K source packets, given that £ < < /N packets have been successfully
received can be computed as follows:

Decoding matrix:

K

Decoding probability:

for.,N) = Ph=K) + X, P(h<K)wg,(r=h)

where:
h.., =max(0,r— N+ K)



Decoding probability of systematic NC

For N > K transmitted packets, the probability of a receiver decoding all of
the K source packets, given that £ < < /N packets have been successfully
received can be computed as follows:

Decoding matrix:

K

Decoding probability:

fo(r,N) = Ph=K) +

where:
h.., =max(0,r— N+ K)

ZhK:_hl ( iIz{)(Ar{:lIz{)WK—h(r_h)
|



Decoding probability of systematic NC

For N > K transmitted packets, the probability of a receiver decoding all of
the K source packets, given that £ < < /N packets have been successfully
received can be computed as follows:

Decoding matrix:

_ 1. -
r.—
\4
- - i
K
Decoding probability:
KL [ K\(N-K
(];Y—_II({) thhmin( h )( r—h )WK—h(r_h)
fK(raN) — N + ~
( r ) ( r ) where:

h.., =max(0,r— N+ K)



Systematic vs. Straightforward NC

* Systematic network codes exhibit a higher probability of decoding all of
the K packets of a source message than straightforward network codes.
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the K packets of a source message than straightforward network codes.

Proof: We need to show that f,(r,N)>w, (N).
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* Systematic network codes exhibit a higher probability of decoding all of
the K packets of a source message than straightforward network codes.

Proof: We need to show that f,(r,N)>w, (N).
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Systematic network codes exhibit a higher probability of decoding all of
the K packets of a source message than straightforward network codes.

Proof: We need to show that f,(r,N)>w, (N).

B = () [ (o) 20 ()5, | 222



Systematic vs. Straightforward NC

Systematic network codes exhibit a higher probability of decoding all of
the K packets of a source message than straightforward network codes.

Proof: We need to show that f,(r,N)>w, (N).

B = () [ (o) 20 ()5, | 222
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Average decoding probability

* The probability of a receiver decoding all of the K source packets, after the
transmission of V> K packets over a channel characterized by a packet
erasure probability p, is

SF NC: PK(N)=2( N )(l—p)r P wi (1)
Sys. NC: P (N)= Z( ) ) P f (r,N)

* The probability of recovering at least M < K source packets, when N> M
packets have been transmitted over a channel with packet erasure
probability p, can be approximated.



Decoding probability of SF NC and Sys. NC
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OU: Ordered Un-coded transmission, SF NC: Straightforward Network Coding,
Sys. NC: Systematic Network Coding. (K =20 and p = 0.1)




Layered NC: Non-Overlapping Window (NOW)
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Layered NC: Non-Overlapping Window (NOW)

Window 1 Window 2 Window 3

Network

coding
N\ process




Average decoding probability of NOW-RLNC

* Encoding is performed over each service layer independently of the others.

* The source linearly combines the %, data packets composing the /-th layer
and generates a stream of 1, > k, coded packets.



Average decoding probability of NOW-RLNC

Encoding is performed over each service layer independently of the others.

The source linearly combines the £, data packets composing the /-th layer
and generates a stream of 1, > k, coded packets.

A user can recover the /-th layer if k; linearly independent coded packets
from that layer are collected. The probability of this event is

P (n)= 21( I;lj )pnl_r(l_p)rwkl (r)

r=kl
where p is the packet erasure probability.

The probability that the user will recover the first / service layers is

[
Dyow(nysen) =P, (1))
!



Layered NC: Expanding Window (EW)
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Layered NC: Expanding Window (EW)

Window 3

Network

coding
N\ process

Associated with Window 1 Associated with Window 2 Associated with Window 3




Layered NC: Expanding Window (EW)

* LetK,=k,+k,+ ...+ k denote the size of the /-th expanding window,
while N, denotes the number of coded packets transmitted to a user and
associated with expanding window /.



Layered NC: Expanding Window (EW)

Let K, =k, + k,+ ... + k; denote the size of the /-th expanding window,
while N, denotes the number of coded packets transmitted to a user and
associated with expanding window /.

The probability of the user recovering the first / service layers (or,
equivalently, the /-th expanding window), can be expressed as

D (N,,....,N,) =
Ny N, (N 1) 2
=22 - Z( ) ( ) (=)=~ g (1nv.r)
h= 07’2—0 "1="min l
where 7, ;= K; — Kip ¥ max(rp, 1. =711, 0) and 7, = K. The

probability that K, out of the r, +r, + ... + r, received coded packets are
linearly independent is g(74,....r)).



Layered NC: Expanding Window (EW)

Let K, =k, + k,+ ... + k; denote the size of the /-th expanding window,
while N, denotes the number of coded packets transmitted to a user and
associated with expanding window /.

The probability of the user recovering the first / service layers (or,
equivalently, the /-th expanding window), can be expressed as

D (N,,....,N,) =
Ny N, 2 (N=r) 2 g
=3 - Z( ) ( ) (1= py=="g,(1....1})
n= 07’2—0 n mlnl l
where r .. ;= K; — K, ; + max(r;, .1 — ., 0) and 7, = K. The

probability that K, out of the r, +r, + ... + r, received coded packets are
linearly independent is g(7,...,r;). But how do we obtain g/(r,,...,r))?



Decoding probability of EW-RLNC

If a (r+r,try) X (k,Thy+k;) matrix is the vertical concatenation of three
random matrices with dimensions r, x k,, r, x (k,7k,) and ry x (k,Tk,+k;),
what is the probability of the matrix having full rank?
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Decoding probability of EW-RLNC

If a (r+r,try) X (k,Thy+k;) matrix is the vertical concatenation of three
random matrices with dimensions r, x k,, r, x (k,7k,) and ry x (k,Tk,+k;),
what is the probability of the matrix having full rank?

A
r Recall that w(r) is the
M probability that a random matrix
of dimensions r X K, forr > K,
. has full rank (i.e., the rank is K).
2
v
A
£
4




Decoding probability of EW-RLNC

If a (r+r,try) X (k,Thy+k;) matrix is the vertical concatenation of three
random matrices with dimensions r, x k,, r, x (k,7k,) and ry x (k,Tk,+k;),
what is the probability of the matrix having full rank?

r 1 Recall that w(r) is the
M probability that a random matrix
of dimensions r X K, forr > K,
. has full rank (i.e., the rank is K).
2
v
A Let w,(r, K) be the probability
that a random matrix of
3 dimensions » x K has rank f,
v where 0 < <min(r, K).




Decoding probability of EW-RLNC

If a (r+r,try) X (k,Thy+k;) matrix is the vertical concatenation of three
random matrices with dimensions r, x k,, r, x (k,7k,) and ry x (k,Tk,+k;),
what is the probability of the matrix having full rank?
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Decoding probability of EW-RLNC

If a (r+r,try) X (k,Thy+k;) matrix is the vertical concatenation of three
random matrices with dimensions r, x k,, r, x (k,7k,) and ry x (k,Tk,+k;),
what is the probability of the matrix having full rank?

By

€<>

Wg (r,k)= Wg (r,K,)
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Decoding probability of EW-RLNC

If a (r+r,try) X (k,Thy+k;) matrix is the vertical concatenation of three
random matrices with dimensions r, x k,, r, x (k,7k,) and ry x (k,Tk,+k;),
what is the probability of the matrix having full rank?

By
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Decoding probability of EW-RLNC

If a (r+r,try) X (k,Thy+k;) matrix is the vertical concatenation of three
random matrices with dimensions r, x k,, r, x (k,7k,) and ry x (k,Tk,+k;),
what is the probability of the matrix having full rank?

B, B,
D> >
e (1) =, (7K, )
X ..!..... rﬂ
S Wy (ks k= )
2 ceees =w, (r,.K,—B,) ¢*"
y eeocooe
B
A 4




Decoding probability of EW-RLNC

If a (r+r,try) X (k,Thy+k;) matrix is the vertical concatenation of three
random matrices with dimensions r, x k,, r, x (k,7k,) and ry x (k,Tk,+k;),
what is the probability of the matrix having full rank?

ﬁl ﬁz K_ﬁl_ﬁZ

€€ >€ >
i I : Wﬁl(l’l,kl)=wﬁl(l’l,Kl)
v (e e
A e 6 06 0 O rﬁl
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v o 6 6 0 O
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Decoding probability of EW-RLNC

If a (r+r,try) X (k,Thy+k;) matrix is the vertical concatenation of three
random matrices with dimensions r, x k,, r, x (k,7k,) and ry x (k,Tk,+k;),
what is the probability of the matrix having full rank?

ﬁl ﬁz K_ﬁl_ﬁZ

€—><€ > € >
”1A :: Wﬁl(l’l,kl)=wﬁl(l’l,Kl)
v |ee
1 ::::: W(I" k‘l‘k—ﬁ) B
AR E X By \N'2°™M 2 1) 4
2 cecoee =w, (r,.K,—B,) ¢*"
v TEEX
A
13( )
Wy_p_p, (15, K = B —-B,) g el
B
_ r3(Bi+B,)
\ _WK_ﬁl_ﬁZ(r3)q3 .




Decoding probability of EW-RLNC

In general, the probability that K, out of the r, + 7, + ... + r, received
coded packets are linearly independent is

-1

l
81T st = Z“'ZHW@- (I’l., K, - Bi—l)qz'k:lrkﬂBk

B By =1
where: B,=0B +B,+...+B for i>0 and B,=0 for i=0

maX(O, K-B,, —21 r.) <p, Smin(rl., K, _Bi—l)

j=i+l J



Decoding probability of EW-RLNC

In general, the probability that K, out of the r, + 7, + ... + r, received
coded packets are linearly independent is

-1

l [
81T st = Z“'ZHW@- (I’l., K, - Bi—l)qz'k:lrkﬂBk

B By =1
where: B,=0B +B,+...+B for i>0 and B,=0 for i=0

maX(O, K-B,, —21 r.) <p, Smin(rl., K, _Bi—l)

j=i+l J

Note that the probability of an » x K random matrix having rank f is

r\ Ws (K)
Wg (r,K)= Z where ( ) denotes the g-binomial coefficient
P ¢ 9 1




Sparse random linear network coding

* So far, we have considered the following cases:
» Straightforward random linear network coding

» Systematic RLNC

» Non-Overlapping Window RLNC (NOW-RLNC)
» Expanding-Window RLNC (EW-RLNC)



Sparse random linear network coding

* So far, we have considered the following cases:
» Straightforward random linear network coding

» Systematic RLNC

» Non-Overlapping Window RLNC (NOW-RLNC)
» Expanding-Window RLNC (EW-RLNC)

* Inthe aforementioned cases, the elements of the coding
matrix were selected uniformly at random from GF(g).

 What if the probability of selecting the zero element is
higher (or lower) than the other elements of GF(g)?



Sparse random matrices

Xy Xy X3 Xy Xg oo X (X

¥y, ( ® © © o o o o o ) where ¢ is an element of GF(g):
Y, ® 6 o o o o o o

Vs ® © o o o o o o ( 0, p

Y4 ® 6 o o o o o o

ys ® o o o o o o o ® — < 1, (l_p)/(q_l)
: ® © o o o o o o

yz.\l—l © © o o o o o o qg-—1, (1_p)/(q_1)

yN \. [ ] e o o o o .)

The probability of a sparse random matrix having full rank has been
bounded from below. We are not aware of exact expressions.



packets have been successfully received, is given by:

The probability of a receiver decoding all of the K source packets, given

that » > K coded

Bound on the decoding probability of sparse NC

R

A\
~
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Bound on the decoding probability of sparse NC

* The probability of a receiver decoding all of the K source packets, given
that » > K coded packets have been successfully received, is given by:

Assume that the top -1

A ©e0o0cec0o0ceco0o0oo A rows are linearly
00000000000 _
00000000000 independent.

i—1 00000000000 .
00000000000 r=1
ceeccecsccee What is the probability

V 600000000000
©00000000000 V that the /-th row is also
<€ >

linearly independent?
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Bound on the decoding probability of sparse NC

* The probability of a receiver decoding all of the K source packets, given
that » > K coded packets have been successfully received, is given by:

< i—1 S Assume that the top i -1
A ©®0 0000000000 A rows are linearly
® ®© 0060 060000 0 0 0 .
00000000000 independent.
i—1 00000000000 .
00000000000 F=1
o000 c00000 What is the probability
VvV © 0 0 000000 0 00
00000000000V that the i-th row is also
<€ > . .
K linearly independent?

By elementary row operations, the top (i - 1) X K sub-matrix can be
transformed into a matrix that contains the (i - 1) x (i - 1) identity matrix.



Bound on the decoding probability of sparse NC

* The probability of a receiver decoding all of the K source packets, given
that » > K coded packets have been successfully received, is given by:

< i—1 S Assume that the topi- 1
A 1000000000 O® A rows are linearly
0100000e@@®@®® -
001 00000®®0®@®e® independent.
i—1 0001000@®@00®@® _
0oo00100eeeee |I=I
0000010%e0e6e What is the probability
v 0000001 @ ®©@ 00
000000000 V that the i-th row is also
< > . :
K linearly independent?

By elementary row operations, the top (i - 1) X K sub-matrix can be
transformed into a matrix that contains the (i - 1) x (i - 1) identity matrix.



Bound on the decoding probability of sparse NC

* The probability of a receiver decoding all of the K source packets, given
that » > K coded packets have been successfully received, is given by:

< i—1 S Assume that the topi- 1
A 1000000000 O® A rows are linearly
0100000e@@®@®® -
001 00000®®0®@®e® independent.
i—1 0001000@®@00®@® _
0oo00100eeeee |I=I
0000010%e0e6e What is the probability
v 0000001 @ ®©@ 00
©e0c0eo0c000000 V that the i-th row is also
< > . :
K linearly independent?

The first (i - 1) elements of the i-th row can be arbitrary but the
remaining (K -7+ 1) elements are uniquely determined by the first
(i - 1) elements.



Bound on the decoding probability of sparse NC

The probability of a receiver decoding all of the K source packets, given
that » > K coded packets have been successfully received, is given by:
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The probability that the i-th row is not contained in the subspace
generated by the top i rows is at least | — ¢ % "1 where

& = max((1-p)/(g-1), p).
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Bound on the decoding probability of sparse NC

* The probability of a receiver decoding all of the K source packets, given
that » > K coded packets have been successfully received, is given by:
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Layered video streams

H.264/SVC video stream formed by multiple video layers:
* the base layer — provides basic reconstruction quality

* (L-1)enhancement layers —gradually improve the quality of
the base layer

Consider an H.264/SVC video stream:
* |tisa GoP stream
* A GoP has fixed number of frames

* Itis characterized by a time duration

* It has a layered nature



Basic LTE-Advanced system model

One-hop wireless communication system
composed of a single source node (eNB)
and U users (UEs).

Point-to-point communications are ‘ E Source 4
3 Node
managed by the eMBMS framework.

The downlink of LTE-A adopts an OFDM structure and has a framed nature

eMBMS-capable subframes radio frame
TB left for other services

|:| TB of subchannel 1 I:I TB of subchannel 2 |:| TB of subchannel 3




Formulation of optimization models

e Abstract structure of transmission medium:

C frequency bands gzzarz= ;7/
(sub-channels) éé%é«% %%

7
Z

Time

 We consider NOW-RLNC and introduce the following indication variable
A= I(DNOW(nLM yeesT ) 2 P)

e Similarly, we use the following indication variable for EW-RLNC

L N
U, = I((J)le{{DEW(Nl,u,...,Nj,u) > P})



Provider-centric optimization models

Proposed mixed allocation (MA) strategies:

(NOW-MA)

U
subject to: ZZW >U ?z

u=l1 forl=1,...,.L
mc—l S mc
forc=2,....L
L VaN
<> n"<B
=l forc=1,...,L

subject to:

min YN
N“C) ..,N(LC) =l =l
U
Zuu,l 2 U tl
v=l forl=1,...L
m.,<m,
forc=2,....L

L
0<Y N <B

=1

forc=1,...



Network configuration

We have considered U=80 users equally spaced and placed along the
radial line representing the symmetry axis of one sector of the target cell.

Node eNB (eNode-B) represents the base station. Users form a Multicast
Group (MG).
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Analytical results
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The performance of the proposed EW-MA is compared to NOW-MA and the
state-of-the-art Multi-rate Transmission (IVIrT). The focus is on GF(2).




User-centric optimization model

* The objective of the previous allocation methods was to minimize the
number of transmitted packets, while meeting a minimum set of service
level agreements . This is from the point of view of the service provider...

* Best practice for burglars: To steal objects with the maximum value and
the minimum weight. Maximizing the profit-cost ratio is the objective of
the Unequal Error Protection Resource Allocation Model (UEP-RAM) .

(UEP-RAM)  max 22@” EN

N NL u=1 I=1
U VaN
subject to: 25” >U t, [=1,....L

0<N, <N, [=1,..,L



Network configuration

MCE / MBMS-GW

(@)

* LTE-Advanced allows multiple
contiguous base stations to
deliver (in a synchronous fashion)
the same services.

e Topimage: we considered a
Single-Frequency Network (SFN)
comprising 4 base stations and
1700 users.

 Bottom image: The distribution
of the Signal-to-Interference-
plus-Noise Ratio (SINR) in space.
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Analytical results
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The proposed optimization framework based on network coding clearly shows
an increase in the coverage of service provider (right-hand side of each figure).



Sparse Random Network Codin

U0 —_— —
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Simulations
—— Upper-Bound

* Results for different numbers of source packets at the transmitter. Upper bounds
(solid lines) are compared to simulations (dashed lines).

* Focus on GF(2). Anincrease in p, (probability of selecting the zero element) causes
an increase in sparsity and a decrease in decoding complexity.

* For 50 source packets and p, =0.5, time to decode=1030 psec; for p, =0.9, time to
decode=352 usec.






Concluding remarks

Exact expressions, approximations or even bounds on the decoding
probability of standard-agnostic network-coded schemes can be used to
optimize the performance of standard-specific systems that employ network
coding. More specifically:

* Theoretical analysis is useful for obtaining performance metrics and
identifying / quantifying trade-offs between network coding schemes
(e.g., systematic vs. straightforward RLNC or EW-RLNC vs. NOW-RLNC).

 Performance metrics can then be used in the definition of resource
allocation frameworks, that can jointly optimize system parameters and
error control options.

* Efficient heuristic strategies can be developed for the derivation of good
qguality solutions in a finite number of steps.
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