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• Failures are the norm 
rather than the exception 

• Redundancy for reliability 
• Replication 
• Erasure coding 
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k 

Using an (𝒏, 𝒌) MDS  
code:  
• Partition the original 

data into 𝒌 packets. 
• Generate 𝒏 packets. 

Store  each packet in a 
different node. 

 
(𝒏, 𝒌) MDS property:   
 reconstruct  the stored  
data from any 𝒌 nodes 
 
The system can tolerate 
any  𝒏 − 𝒌 node failures 
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storage node 1 

storage node 2 

storage node n 

Node repair 

• If only one node fails, 
how to rebuild the 
redundancy?  

• Naïve method: to 
reconstruct the whole 
data from 𝒌 nodes 

• Solution:  
regenerating 
codes[DimGodWaiRam07] 
for efficient  single 
node repairs 
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Regenerating codes – the idea 

• To reduce the repair bandwidth, during a node repair  

– communicate with more nodes, 

– but download only part of their stored data 

  

A=(A+B+D)-(B+D) 
B=(B+D)-D 

A 
B 
C 
D 

A 
B 

C 
D 

A+C 
B+D 

B+C 
A+B+D 

A? 
B? 

Read 1 symbol from 3 nodes => 3 symbols 

Example: (4,2,2) MDS code 
𝒏  𝒌  𝜶 

Naïve repair:  
read from any 𝒌 =2 nodes => 4 symbols 
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System model:(𝑛, 𝑘)-DSS  
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Storage-repair bandwidth tradeoff 

• [DimGodWaiRam07] established a tradeoff between 
storage α vs. repair bandwidth 𝛾 = 𝛽𝑑 for an (𝑛, 𝑘) - DSS 
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EXAMPLE: HDFS RAID RS code vs. MSR/MBR 

1 2 3 4 5 6 7 8 9 10 

P1 P2 P3 P4 

640 MB file => 10 blocks 

• HDFS RAID uses (14,10) Reed-Solomon code.  

Data size 𝑀 = 640 MB 
Storage nodes  𝑛 = 14  
DC connects to any 𝑘 = 10 nodes 
Newcomer node connects to 𝑑 = 10 nodes 
 
 
 
 
 

RS code MSR code MBR code 

Storage per node α 64 MB 

Repair bandwidth 𝛽𝑑  640 MB 

(14,10) –RS code 
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Our approach 

• Subspace condition* 

– The problem of construction of MSR codes is 
described by the algebraic problem of 
construction of certain matrices and subspaces  

• Graph theory 

–  Perfect matchings in complete hypergraphs 

* I. Tamo, Z. Wang, and J. Bruck, “Access versus bandwidth in codes for storage", IEEE Trans. Inf. Theory,  2014. 
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Encoding: 

f I
0
 0  
I
I
I
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  𝐴2
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=
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Subspace condition  
for 𝑛, 𝑘, 𝛼 − 𝑀𝑆𝑅 code 

• Encoding:   a file 𝑓 ∈ 𝔽𝑞
𝑘𝛼 is partitioned into 𝑘 parts of size 𝛼:  

             𝐟 = 𝑣1, 𝑣2, … , 𝑣𝑘 , 𝑣𝑖 ∈ 𝔽𝑞
𝛼  

𝐟 → 𝐟 ⋅ 𝐺 = 𝐶1, … , 𝐶𝑛 ,  

 where 𝐺 =
I
⋱

I

I
⋮
 I

𝐴11

⋮
𝐴1𝑘

⋯
⋱
⋯

𝐴 𝑛−𝑘−1 1

⋮
𝐴 𝑛−𝑘−1 𝑘

,  𝐴𝑖𝑗∈ 𝔽𝑞
𝛼×𝛼  

 
𝐶𝑗 = 𝑣𝑗 , 1 ≤ 𝑗 ≤ 𝑘 

𝐶𝑘+𝑖 =  𝐴𝑖𝑗𝐶𝑗
𝑘
𝑗=1 , 1 ≤  𝑖 ≤  𝑛 − 𝑘 
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  Every square block submatrix of 𝐺′ is invertible  
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The nonsingular property 



Subspace condition  
for 𝑛, 𝑘, 𝛼 − 𝑀𝑆𝑅 code 

• Repair of node 𝒕:                              

 node 𝑗 ∈ [𝑛]\{t} sends 𝑆𝑡  𝐶𝑗, where 𝑆𝑡 ∈ 𝔽𝑞

𝛼

𝑟
×𝛼

, 𝑟 = 𝑛 − 𝑘.  

 𝕊𝑡: =< 𝑆𝑡> is called the repairing subspace 

          (the repairing subspace are independent on the helper node*) 

 𝕊𝑡 ⊆ 𝔽𝑞
𝛼, dim 𝕊𝑡 =

𝛼

𝑟
. 

      

* I. Tamo, Z. Wang, and J. Bruck, “Access versus bandwidth in codes for storage", IEEE Trans. Inf. Theory,  2014. 12 
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for 𝑛, 𝑘, 𝛼 − 𝑀𝑆𝑅 code 

• Repair of node 𝒕:                              

 node 𝑗 ∈ [𝑛]\{t} sends 𝑆𝑡  𝐶𝑗, where 𝑆𝑡 ∈ 𝔽𝑞

𝛼

𝑟
×𝛼

, 𝑟 = 𝑛 − 𝑘.  

 𝕊𝑡: =< 𝑆𝑡> is called the repairing subspace 

          (the repairing subspace are independent on the helper node*) 

 𝕊𝑡 ⊆ 𝔽𝑞
𝛼, dim 𝕊𝑡 =

𝛼

𝑟
. 

     The optimal access  property  every 𝕊𝑡=< 𝑒𝑖1 , … , 𝑒𝑖𝑙
𝑟

> 

 1.    𝕊𝑡+𝕊𝑡𝐴1𝑡 +…+ 𝕊𝑡𝐴(𝑟−1)𝑡 = 𝔽𝑞
𝛼 

  The independence property 

 2.  𝕊𝑡 =𝕊𝑡𝐴𝑖𝑗 , 𝑗 ≠ 𝑡,  where 𝕊𝑡𝐴𝑖𝑡:=  rs 𝑆𝑡𝐴𝑖𝑡  

  The invariance property 

 * I. Tamo, Z. Wang, and J. Bruck, “Access versus bandwidth in codes for storage", IEEE Trans. Inf. Theory,  2014. 12 



Sufficient Condition 
• Theorem  [TWB14]: Let 𝛼  and 𝑟 be integers s.t. 𝑟|𝛼 . If there 

exist subspaces  𝕊1, … , 𝕊𝑘 ⊆ 𝔽𝑞
𝛼 of dimension 𝛼/𝑟 and encoding 

matrices  𝐴𝑖𝑗 ∈ 𝔽𝑞
𝛼×𝛼 , 𝑖 ∈ 𝑟 − 1 , 𝑗 ∈  [𝑘] which satisfy 

1. The nonsingular property:                                     

Every square block submatrix of 
I
⋮
 I

𝐴11

⋮
𝐴1𝑘

⋯
⋱
⋯

𝐴 𝑟−1 1

⋮
𝐴 𝑟−1 𝑘

  is invertible 

2. The independence property:             
            𝕊𝑡+𝕊𝑡𝐴1𝑡 + …+ 𝕊𝑡 𝐴(𝑟−1)𝑡 = 𝔽𝑞

𝛼 

3. The invariance property: 

            𝕊𝑡 =𝕊𝑡𝐴𝑖𝑗 , 𝑗 ≠ 𝑡 

       Then the corresponding code is an 𝑛, 𝑘, 𝛼 −MSR code. 

13 



Sub-Packetization Bound 
• Node capacity 𝛼 symbols = sub-packetization factor 

• Optimal bandwidth =>  𝜶 >1 

 

14 



Sub-Packetization Bound 
• Node capacity 𝛼 symbols = sub-packetization factor 

• Optimal bandwidth =>  𝜶 >1 

• Q: For a given (𝑛, 𝑘), what is the minimum node capacity 
𝛼 required to achieve the optimal bandwidth and 
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Sub-Packetization Bound 
• Node capacity 𝛼 symbols = sub-packetization factor 

• Optimal bandwidth =>  𝜶 >1 

• Q: For a given (𝑛, 𝑘), what is the minimum node capacity 
𝛼 required to achieve the optimal bandwidth and 
optimal access? 

 

• For a given node capacity of 𝛼 symbols  and a given 
number of parity nodes 𝑟, what is the maximum number 
of systematic nodes 𝑘 for an optimal access MSR code? 

• Theorem [TWB14]: Let 𝑘 be the largest number of 
systematic nodes in an (𝑘 + 𝑟, 𝑘, 𝛼) optimal access MSR 
code, then 

𝑘 = 𝑟log𝑟𝛼 
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Our goal 
For 𝑘 = 𝑟log𝑟𝛼,  construct  sets of  

• subspaces  𝕊1, … , 𝕊𝑘 ⊆ 𝔽𝑞
𝛼 of dimension 𝛼/𝑟 spanned by vectors 

of the standard basis 

• Invertible matrices  𝐴𝑖𝑗 ∈ 𝔽𝑞
𝛼×𝛼 , 1 ≤ 𝑖 ≤ 𝑟 − 1, 1 ≤ 𝑗 ≤ 𝑘  

which satisfy 

1. The nonsingular property: every square block submatrix of               

 
I
⋮
 I

𝐴11

⋮
𝐴1𝑘

⋯
⋱
⋯

𝐴 𝑟−1 1

⋮
𝐴 𝑟−1 𝑘

  is invertible 

2. The independence property:  𝕊𝑡+𝕊𝑡𝐴1𝑡 + …+ 𝕊𝑡 𝐴(𝑟−1)𝑡 = 𝔽𝑞
𝛼 

   

3. The invariance property:     𝕊𝑡 =𝕊𝑡𝐴𝑖𝑗 , 𝑗 ≠ 𝑡 

 

   

 for a field size 𝒒 as small as possible. 
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In particular for 𝐴𝑖𝑗 = (𝐴𝑗)
𝑖: 

For 𝑘 = 𝑟log𝑟𝛼, construct  a set 𝑨𝒊, 𝕊𝒊 𝐢=𝟏
𝐤  of 

• subspaces  𝕊1, … , 𝕊𝑘 ⊆ 𝔽𝑞
𝛼 of dimension 𝛼/𝑟 spanned by vectors 

of the standard basis 

• Invertible matrices  𝐴1, … , 𝐴𝑘 ∈ 𝔽𝑞
𝛼×𝛼  

which satisfy 

1. The nonsingular property: every square block submatrix of               

 
I
⋮
 I

𝐴1

⋮
𝐴𝑘

⋯
⋱
⋯

𝐴1
𝑟−1

⋮
𝐴𝑘

𝑟−1
  is invertible 

2. The independence property:    

  𝕊𝑡+𝕊𝑡𝐴𝑡 + 𝕊𝑡𝐴𝑡
2 + …+ 𝕊𝑡 𝐴𝑡

𝑟−1 = 𝔽𝑞
𝛼    

3. The invariance property:     𝕊𝑡 =𝕊𝑡𝐴𝑗 , 𝑗 ≠ 𝑡 

 

   

 for a field size 𝒒 as small as possible. 
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In particular for 𝐴𝑖𝑗 = (𝐴𝑗)
𝑖: 

For 𝑘 = 𝑟log𝑟𝛼, construct  a set 𝐴𝑖 , 𝕊𝑖 i=1
k  of 

• subspaces  𝕊1, … , 𝕊𝑘 ⊆ 𝔽𝑞
𝛼 of dimension 𝛼/𝑟 spanned by vectors 

of the standard basis 

• Invertible matrices  𝐴1, … , 𝐴𝑘 ∈ 𝔽𝑞
𝛼×𝛼  

which satisfy 

1. The nonsingular property: every square block submatrix of               

 
I
⋮
 I

𝐴1

⋮
𝐴𝑘

⋯
⋱
⋯

𝐴1
𝑟−1

⋮
𝐴𝑘

𝑟−1
  is invertible 

2. The independence property:    

  𝕊𝑡+𝕊𝑡𝐴𝑡 + 𝕊𝑡𝐴𝑡
2 + …+ 𝕊𝑡 𝐴𝑡

𝑟−1 = 𝔽𝑞
𝛼    

3. The invariance property:     𝕊𝑡 =𝕊𝑡𝐴𝑗 , 𝑗 ≠ 𝑡 

 

   

 for a field size 𝒒 as small as possible. 

independent 
𝕊1 

𝕊2 

𝕊3 
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Known results 

Constructions of access-optimal MSR codes with the minimum 

sub-packetization factor 𝜶 = 𝒓𝒌/𝒓: 

 

[TWB 12] I. Tamo, Z. Wang, and J. Bruck, “Long MDS codes for optimal repair bandwidth," ISIT12. 
[ASK15] G. K. Agarwal, B. Sasidharan, and P. V. Kumar, “An alternative construction of an access-optimal 
regenerating codes with optimal sub-packetization level,” NCC 2015. 

number r of 
parity nodes 

 finite field size 
[TWB 12] 

finite field size 
[ASK15] 

2 𝑘 + 1 𝑘 + 1 

3 𝑘23𝑘/3−1 + 1 𝑘 + 3
𝑘

3𝑘/3+1 

r  𝑘𝑟−1𝑟𝑘/𝑟−1  + 1 𝑛
𝑘

𝑟𝑘/𝑟+1 

17 



Our results 

Constructions of access-optimal MSR codes with the minimum 

sub-packetization factor 𝜶 = 𝒓𝒌/𝒓: 

 

number r of 
parity nodes 

 finite field size 
[TWB 12] 

finite field size 
[ASK15] 

Our finite  
field size 𝒒 

2 𝑘 + 1 𝑘 + 1 𝒌/𝟐 + 𝟏 

3 𝑘23𝑘/3−1 + 1 𝑘 + 3
𝑘

3𝑘/3+1 2𝒌 + 𝟏 odd 𝒒 
𝒌 + 𝟏 even 𝒒 

r  𝑘𝑟−1𝑟𝑘/𝑟−1  + 1 𝑛
𝑘

𝑟𝑘/𝑟+1 

[TWB 12] I. Tamo, Z. Wang, and J. Bruck, “Long MDS codes for optimal repair bandwidth," ISIT12. 
[ASK15] G. K. Agarwal, B. Sasidharan, and P. V. Kumar, “An alternative construction of an access-optimal 
regenerating codes with optimal sub-packetization level,” NCC 2015. 
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Our Construction  

• Consider the matrix   

 

• Notice: 

 

  

 

 

 
0 𝑟-1 𝑟-2 
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Our Construction  

• Consider the matrix   

 

• Notice: 

 

• The subspace          is an independent subspace for A. 

 

 

 

  

 

 

 
0 𝑟-1 𝑟-2 0  +        𝐴 + ⋯+      𝐴𝑟−1 = 𝔽𝑞

𝛼  0 0 
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The independence property:   

 𝕊𝑡+𝕊𝑡𝐴𝑡 + 𝕊𝑡𝐴𝑡
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Our Construction  

• Consider the matrix   

 

• Notice: 

 

• The subspace          is an independent subspace for A. 

• An eigenspace is an invariant subspace of A 

– The eigenvalues  of A are the roots of unity of order 𝑟 

 

– The eigenvectors are  
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𝛼/𝑟 

Our Construction  

• Let 

 

• The subspace   𝕊 = 〈𝑒0, 𝑒𝑟 , 𝑒2𝑟 , … , 𝑒𝛼−𝑟〉              
is an independent subspace 

 

= 

20 



𝛼/𝑟 

Our Construction  

• Let 

 

• The subspace   𝕊 = 〈𝑒0, 𝑒𝑟 , 𝑒2𝑟 , … , 𝑒𝛼−𝑟〉              
is an independent subspace 

 

• Let 

= 

• The subspace                                    is an independent 
subspace for M. 

• Subspaces of the form                   
 are eigenspaces, and thus also invariant subspaces. 

𝛼/𝑟 
= 

α-1 α-1 

α 
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Problems: 

• Choose the change-of-basis matrices        such that 
the invariance and the independence property      
(for all     ’s) are satisfied. 

• Modify each      (multiply by a field constant 𝜆)such 
that the nonsingular property is satisfied 
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Problems: 

• Choose the change-of-basis matrices        such that 
the invariance and the independence property      
(for all     ’s) are satisfied. 

• Modify each      (multiply by a field constant 𝜆)such 
that the nonsingular property is satisfied 

 

Solution: 
Based on perfect matchings  in uniform hypergraphs 
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Perfect matchings in uniform hypergraphs 

• 𝑟-uniform hypergraph - edges are sets of 𝑟 vertices                 
(if 𝑟 = 2 then a standard graph) 

• Matching – a set of mutually disjoint edges 

• Perfect matching – a matching that covers all the vertices 
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Perfect matchings in uniform hypergraphs 

• 𝑟-uniform hypergraph - edges are sets of 𝑟 vertices                 
(if 𝑟 = 2 then a standard graph) 

• Matching – a set of mutually disjoint edges 

• Perfect matching – a matching that covers all the vertices 

• Let 𝐾𝛼
𝑟  be a complete 𝑟-uniform hypergraph whose 𝛼  vertices 

are colored in 𝑟 colors.                    
Perfect colored matching in 𝐾𝛼

𝑟 – a perfect matching where no 
edge contains two vertices of the same color. 

 

• We identify  𝛼  unit vectors 𝑒0, … , 𝑒𝛼−1  

    of length 𝛼  with the 𝛼 vertices of  𝐾𝛼
𝑟. 
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Change Basis Matrices from Matchings 

𝑒0, … , 𝑒𝛼−1  𝛼 vertices of 𝐾𝛼
𝑟 
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Change Basis Matrices from Matchings 

𝑒0, … , 𝑒𝛼−1  𝛼 vertices of 𝐾𝛼
𝑟 

 
Let       be a perfect colored matching. 

•     contributes 𝑟 pairs,  

 such that 

 

All repair subspaces are spanned by unit vectors   
then access-optimal code 
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Change Basis Matrices from Matchings 

𝑒0, … , 𝑒𝛼−1  𝛼 vertices of 𝐾𝛼
𝑟 

 
Let       be a perfect colored matching. 

•     contributes 𝑟 pairs,  

 such that 

 

    a function of   

    a function of   

𝛼/𝑟 
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Change Basis Matrices from Matchings 

  
    a function of   

    a function of   
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𝛼/𝑟 

Ensure that 
𝑆𝑀𝑖

 is an independent subspace 

𝑆𝑀𝑗  is an eigenspace, for 𝑖 ≠ 𝑗 



Change Basis Matrices from Matchings 

  

e.g.,  

  a function of 
   

    a function of   

    a function of   

For  
2 

Independent 
subspace; 

Eigenspace for 

Eigenspace for  
24 

𝛼/𝑟 

Ensure that 
𝑆𝑀𝑖

 is an independent subspace 

𝑆𝑀𝑗  is an eigenspace, for 𝑖 ≠ 𝑗 



From One Matching  
 to Many Matchings 

• One matching contributes 𝒓 pairs 

• More than one matching? 
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• Construct codes from different matchings which 
satisfy a mutual relation: 

– Each edge in one matching is monochromatic in 
any other matching. 
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From One Matching  
 to Many Matchings 

• One matching contributes 𝒓 pairs 

• More than one matching? 

• Construct codes from different matchings which 
satisfy a mutual relation: 

– Each edge in one matching is monochromatic in 
any other matching. 

• Can construct 𝒌/𝒓 such mathchings 

 

𝒌  pairs:     …    1 1 𝑘/𝑟 𝑘/𝑟 
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The Nonsingular Property 
• So far, the construction works for any number 𝑟 of 

parities. 

• What about the nonsingular property? 

–  square block submatrix of   
I
⋮
 I

𝐴1

⋮
𝐴𝑘

⋯
⋱
⋯

𝐴1
𝑟−1

⋮
𝐴𝑘

𝑟−1
  is nonsingular 
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• rank(𝐴𝑖 − 𝐴𝑗) = 𝛼 

• 𝐴𝑖 is nonsingular  
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• For 𝒓 = 𝟑 parities: 
• rank(𝐴𝑖 − 𝐴𝑗) = 𝛼 

• rank(𝐴𝑖
2 − 𝐴𝑗

2) = 𝛼 

• Non singularity of 
 

• For 𝒓 = 𝟐 parities: 
• rank(𝐴𝑖 − 𝐴𝑗) = 𝛼 

• 𝐴𝑖 is nonsingular  



The Nonsingular Property 
• Our solution: 

      𝐴𝑖 ⇒ 𝜆𝑖𝐴𝑖 , 0 ≠ 𝜆𝑖 ∈ 𝔽𝑞 , 𝜆𝑖 = 𝜆𝑗  for the same matching 
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• For 𝒓 = 𝟑 parities: 
 

𝒒 ≥  
𝟐𝒌 + 𝟏 𝐟𝐨𝐫 𝐨𝐝𝐝 𝒒
𝒌 + 𝟏 𝐟𝐨𝐫 𝐞𝐯𝐞𝐧 𝒒

 

• For 𝒓 = 𝟐 parities: 
 

𝒒 = 𝒌/𝟐 + 𝟏 



Our results 

Constructions of access-optimal MSR codes with the minimum 

sub-packetization factor 𝜶 = 𝒓𝒌/𝒓: 

 

number r of 
parity nodes 

 finite field size 
[TWB 12] 

finite field size 
[ASK15] 

Our finite  
field size 𝒒 

2 𝑘 + 1 𝑘 + 1 𝒌/𝟐 + 𝟏 

[TWB 12] I. Tamo, Z. Wang, and J. Bruck, “Long MDS codes for optimal repair bandwidth," ISIT12. 
[ASK15] G. K. Agarwal, B. Sasidharan, and P. V. Kumar, “An alternative construction of an access-optimal 
regenerating codes with optimal sub-packetization level,” NCC 2015. 
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r  𝑘𝑟−1𝑟𝑘/𝑟−1  + 1 𝑛
𝑘

𝑟𝑘/𝑟+1 ? 
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Future Research 

• Nonsingularity for more than three parities. 

• Reduce the field size. 
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Future Research 

• Nonsingularity for more than three parities. 

• Reduce the field size. 

 

• In general: 

Non-systematic node failure. 

More than one simultaneous failures? 
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Thank you! 


